Chapter 5

Important Distributions and
Densities

5.1 Important Distributions

In this chapter, we describe the discrete probability distributions and the continuous
probability densities that occur most often in the analysis of experiments. We will
also show how one simulates these distributions and densities on a computer.

Discrete Uniform Distribution

In Chapter 1, we saw that in many cases, we assume that all outcomes of an exper-
iment are equally likely. If X is a random variable which represents the outcome
of an experiment of this type, then we say that X is uniformly distributed. If the
sample space S is of size n, where 0 < n < oo, then the distribution function m(w)
is defined to be 1/n for all w € S. As is the case with all of the discrete probabil-
ity distributions discussed in this chapter, this experiment can be simulated on a
computer using the program GeneralSimulation. However, in this case, a faster
algorithm can be used instead. (This algorithm was described in Chapter 1; we
repeat the description here for completeness.) The expression

1+ [n(rnd)]

takes on as a value each integer between 1 and n with probability 1/n (the notation
|z| denotes the greatest integer not exceeding x). Thus, if the possible outcomes
of the experiment are labelled wy wso, ..., wy, then we use the above expression to
represent the subscript of the output of the experiment.

If the sample space is a countably infinite set, such as the set of positive integers,
then it is not possible to have an experiment which is uniform on this set (see
Exercise 3). If the sample space is an uncountable set, with positive, finite length,
such as the interval [0, 1], then we use continuous density functions (see Section 5.2).
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Binomial Distribution

The binomial distribution with parameters n, p, and k£ was defined in Chapter 3. It
is the distribution of the random variable which counts the number of heads which
occur when a coin is tossed n times, assuming that on any one toss, the probability
that a head occurs is p. The distribution function is given by the formula

n _
b(n7p’ k) = <k>pkqn k ’

where ¢ =1 — p.

One straightforward way to simulate a binomial random variable X is to compute
the sum of n independent 0 — 1 random variables, each of which take on the value 1
with probability p. This method requires n calls to a random number generator to
obtain one value of the random variable. When n is relatively large (say at least 30),
the Central Limit Theorem (see Chapter 9) implies that the binomial distribution is
well-approximated by the corresponding normal density function (which is defined
in Section 5.2) with parameters y = np and ¢ = /npg. Thus, in this case we
can compute a value Y of a normal random variable with these parameters, and if
—1/2 <Y < n+1/2, we can use the value

Y +1/2]

to represent the random variable X. If Y < —1/2 or Y > n+ 1/2, we reject Y and
compute another value. We will see in the next section how we can quickly simulate
normal random variables.

Geometric Distribution

Consider a Bernoulli trials process continued for an infinite number of trials; for
example, a coin tossed an infinite sequence of times. We showed in Section 2.2
how to assign a probability measure to the infinite tree. Thus, we can determine
the distribution for any random variable X relating to the experiment provided
P(X = a) can be computed in terms of a finite number of trials. For example, let
T be the number of trials up to and including the first success. Then

P(T=1) = p,
PT=2) = qp,
P(T=3) = ¢’p,

and in general,
P(T=n)=q¢"'p.

To show that this is a distribution, we must show that

prap+apt---=1.
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Figure 5.1: Geometric distributions.

The left-hand expression is just a geometric series with first term p and common
ratio ¢, so its sum is

l—q
which equals 1.

In Figure 5.1 we have plotted this distribution using the program Geometric-
Plot for the cases p = .5 and p = .2. We see that as p decreases we are more likely
to get large values for T, as would be expected. In both cases, the most probable
value for T is 1. This will always be true since

PT=j5+1
(7‘].) =q< 1.
P(T = j)
In general, if 0 < p < 1, and ¢ = 1 — p, then we say that the random variable T
has a geometric distribution if

PT=j)=¢"p,

forj=1, 2, 3, ....

To simulate the geometric distribution with parameter p, we can simply compute
a sequence of random numbers in [0, 1), stopping when an entry does not exceed p.
However, for small values of p, this is time-consuming (taking, on the average, 1/p
steps). We now describe a method whose running time does not depend upon the
size of p. Let X be a geometrically distributed random variable with parameter p,
where 0 < p < 1. Now, define Y to be the smallest integer satisfying the inequality

1—¢" >rnd. (5.1)
Then we have
PY=j = P(l—qj > rnd > 1—qj_1)
R

¢ '(1-q)
= qj_l
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Thus, Y is geometrically distributed with parameter p. To generate Y, all we have
to do is solve Equation 5.1 for Y. We obtain

v — \‘log(l - rnd)J .

log q

Since log(1 —rnd) and log(rnd) are identically distributed, Y can also be generated

using the equation
log rnd
Y=|——].
{ log ¢q J

Example 5.1 The geometric distribution plays an important role in the theory of
queues, or waiting lines. For example, suppose a line of customers waits for service
at a counter. It is often assumed that, in each small time unit, either 0 or 1 new
customers arrive at the counter. The probability that a customer arrives is p and
that no customer arrives is ¢ = 1 — p. Then the time T until the next arrival has
a geometric distribution. It is natural to ask for the probability that no customer
arrives in the next k time units, that is, for P(T > k). This is given by

o0
PC>k=> ¢ 'p = p+a+dp+-)
j=k+1
This probability can also be found by noting that we are asking for no successes
(i.e., arrivals) in a sequence of k consecutive time units, where the probability of a
success in any one time unit is p. Thus, the probability is just ¢¥, since arrivals in
any two time units are independent events.

It is often assumed that the length of time required to service a customer also
has a geometric distribution but with a different value for p. This implies a rather
special property of the service time. To see this, let us compute the conditional
probability

PT>r+s) q¢7**

PT>r+s|T>r)= PT > 1) =7 =q° .

Thus, the probability that the customer’s service takes s more time units is inde-
pendent of the length of time 7 that the customer has already been served. Because
of this interpretation, this property is called the “memoryless” property, and is also
obeyed by the exponential distribution. (Fortunately, not too many service stations
have this property.) O

Negative Binomial Distribution

Suppose we are given a coin which has probability p of coming up heads when it is
tossed. We fix a positive integer k, and toss the coin until the kth head appears. We
let X represent the number of tosses. When k£ = 1, X is geometrically distributed.
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For a general k, we say that X has a negative binomial distribution. We now
calculate the probability distribution of X. If X = z, then it must be true that
there were exactly k — 1 heads thrown in the first  — 1 tosses, and a head must
have been thrown on the xth toss. There are

z—1

k—1
sequences of length x with these properties, and each of them is assigned the same
probability, namely

pk—qu—k )

Therefore, if we define
u(z, k,p) = P(X = x)

then )
—
k _ k _r—k )
u(z, k,p) (k 3 l)p q

One can simulate this on a computer by simulating the tossing of a coin. The
following algorithm is, in general, much faster. We note that X can be understood
as the sum of k£ outcomes of a geometrically distributed experiment with parameter
p. Thus, we can use the following sum as a means of generating X:

zk: log rnd;
log ¢ |~

Jj=1

Example 5.2 A fair coin is tossed until the second time a head turns up. The
distribution for the number of tosses is u(z, 2, p). Thus the probability that z tosses
are needed to obtain two heads is found by letting £ = 2 in the above formula. We

obtain N
Tz —
2,1/2) = —
w212 = ("7 5
forz=2/3,....

In Figure 5.2 we give a graph of the distribution for £ = 2 and p = .25. Note
that the distribution is quite asymmetric, with a long tail reflecting the fact that
large values of = are possible. O

Poisson Distribution

The Poisson distribution arises in many situations. It is safe to say that it is one of
the three most important discrete probability distributions (the other two being the
uniform and the binomial distributions). The Poisson distribution can be viewed
as arising from the binomial distribution or from the exponential density. We shall
now explain its connection with the former; its connection with the latter will be
explained in the next section.

Suppose that we have a situation in which a certain kind of occurrence happens
at random over a period of time. For example, the occurrences that we are interested
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Figure 5.2: Negative binomial distribution with £ = 2 and p = .25.

in might be incoming telephone calls to a police station in a large city. We want
to model this situation so that we can consider the probabilities of events such
as more than 10 phone calls occurring in a 5-minute time interval. Presumably,
in our example, there would be more incoming calls between 6:00 and 7:00 P.M.
than between 4:00 and 5:00 A.M., and this fact would certainly affect the above
probability. Thus, to have a hope of computing such probabilities, we must assume
that the average rate, i.e., the average number of occurrences per minute, is a
constant. This rate we will denote by A. (Thus, in a given 5-minute time interval,
we would expect about 5\ occurrences.) This means that if we were to apply our
model to the two time periods given above, we would simply use different rates
for the two time periods, thereby obtaining two different probabilities for the given
event.

Our next assumption is that the number of occurrences in two non-overlapping
time intervals are independent. In our example, this means that the events that
there are j calls between 5:00 and 5:15 P.M. and k calls between 6:00 and 6:15 P.M.
on the same day are independent.

We can use the binomial distribution to model this situation. We imagine that
a given time interval is broken up into n subintervals of equal length. If the subin-
tervals are sufficiently short, we can assume that two or more occurrences happen
in one subinterval with a probability which is negligible in comparison with the
probability of at most one occurrence. Thus, in each subinterval, we are assuming
that there is either 0 or 1 occurrence. This means that the sequence of subintervals
can be thought of as a sequence of Bernoulli trials, with a success corresponding to
an occurrence in the subinterval.

To decide upon the proper value of p, the probability of an occurrence in a given
subinterval, we reason as follows. On the average, there are Af occurrences in a



5.1. IMPORTANT DISTRIBUTIONS 189

time interval of length t. If this time interval is divided into n subintervals, then
we would expect, using the Bernoulli trials interpretation, that there should be np
occurrences. Thus, we want

A =np,
SO
At
p=—.
n

We now wish to consider the random variable X, which counts the number of
occurrences in a given time interval. We want to calculate the distribution of X.
For ease of calculation, we will assume that the time interval is of length 1; for time
intervals of arbitrary length ¢, see Exercise 11. We know that

P(X =0)=bnp,0)= (1 -p)" = (1-2)".

For large n, this is approximately e~ *. It is easy to calculate that for any fixed k,
we have

b(n, p, k) A—(k=1p

b(n,p,k—1) kq

which, for large n (and therefore small p) is approximately A/k. Thus, we have

P(X=1)=~X",

and in general,
)\k
~ e
k!
The above distribution is the Poisson distribution. We note that it must be checked
that the distribution given in Equation 5.2 really is a distribution, i.e., that its
values are non-negative and sum to 1. (See Exercise 12.)

P(X =k) (5.2)

The Poisson distribution is used as an approximation to the binomial distribu-
tion when the parameters n and p are large and small, respectively (see Examples 5.3
and 5.4). However, the Poisson distribution also arises in situations where it may
not be easy to interpret or measure the parameters n and p (see Example 5.5).

Example 5.3 A typesetter makes, on the average, one mistake per 1000 words.
Assume that he is setting a book with 100 words to a page. Let S1gg be the number
of mistakes that he makes on a single page. Then the exact probability distribution
for S99 would be obtained by considering Sigg as a result of 100 Bernoulli trials
with p = 1/1000. The expected value of Sy is A = 100(1/1000) = .1. The exact
probability that S1g0 = j is 5(100,1/1000, j), and the Poisson approximation is

e (1)

it
In Table 5.1 we give, for various values of n and p, the exact values computed by
the binomial distribution and the Poisson approximation. O
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Poisson | Binomial | Poisson | Binomial | Poisson | Binomial

n = 100 n = 100 n = 1000

J A=.1 | p=.001 A=1 p=.01 A=10 p=.01
0 .9048 .9048 .3679 .3660 .0000 .0000
1 .0905 .0905 .3679 .3697 .0005 .0004
2 .0045 .0045 1839 .1849 .0023 .0022
3 .0002 .0002 .0613 .0610 .0076 .0074
4 .0000 .0000 .0153 .0149 .0189 .0186
5 .0031 .0029 .0378 .0374
6 .0005 .0005 .0631 .0627
7 .0001 .0001 .0901 .0900
8 .0000 .0000 1126 1128
9 1251 .1256
10 1251 1257
11 1137 1143
12 .0948 .0952
13 .0729 .0731
14 .0521 .0520
15 .0347 .0345
16 .0217 .0215
17 .0128 .0126
18 .0071 .0069
19 .0037 .0036
20 .0019 .0018
21 .0009 .0009
22 .0004 .0004
23 .0002 .0002
24 .0001 .0001
25 .0000 .0000

Table 5.1: Poisson approximation to the binomial distribution.
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Example 5.4 In his book,! Feller discusses the statistics of flying bomb hits in the
south of London during the Second World War.

Assume that you live in a district of size 10 blocks by 10 blocks so that the total
district is divided into 100 small squares. How likely is it that the square in which
you live will receive no hits if the total area is hit by 400 bombs?

We assume that a particular bomb will hit your square with probability 1/100.
Since there are 400 bombs, we can regard the number of hits that your square
receives as the number of successes in a Bernoulli trials process with n = 400 and
p = 1/100. Thus we can use the Poisson distribution with A = 400 -1/100 = 4 to
approximate the probability that your square will receive j hits. This probability
is p(j) = e %49/5!. The expected number of squares that receive exactly j hits
is then 100 - p(j). It is easy to write a program LondonBombs to simulate this
situation and compare the expected number of squares with j hits with the observed
number. In Exercise 26 you are asked to compare the actual observed data with
that predicted by the Poisson distribution.

In Figure 5.3, we have shown the simulated hits, together with a spike graph
showing both the observed and predicted frequencies. The observed frequencies are
shown as squares, and the predicted frequencies are shown as dots. O

If the reader would rather not consider flying bombs, he is invited to instead consider
an analogous situation involving cookies and raisins. We assume that we have made
enough cookie dough for 500 cookies. We put 600 raisins in the dough, and mix it
thoroughly. One way to look at this situation is that we have 500 cookies, and after
placing the cookies in a grid on the table, we throw 600 raisins at the cookies. (See
Exercise 22.)

Example 5.5 Suppose that in a certain fixed amount A of blood, the average
human has 40 white blood cells. Let X be the random variable which gives the
number of white blood cells in a random sample of size A from a random individual.
We can think of X as binomially distributed with each white blood cell in the body
representing a trial. If a given white blood cell turns up in the sample, then the
trial corresponding to that blood cell was a success. Then p should be taken as
the ratio of A to the total amount of blood in the individual, and n will be the
number of white blood cells in the individual. Of course, in practice, neither of
these parameters is very easy to measure accurately, but presumably the number
40 is easy to measure. But for the average human, we then have 40 = np, so we
can think of X as being Poisson distributed, with parameter A\ = 40. In this case,
it is easier to model the situation using the Poisson distribution than the binomial
distribution. O

To simulate a Poisson random variable on a computer, a good way is to take
advantage of the relationship between the Poisson distribution and the exponential
density. This relationship and the resulting simulation algorithm will be described
in the next section.

libid., p. 161.
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5.1. IMPORTANT DISTRIBUTIONS 193

Hypergeometric Distribution

Suppose that we have a set of IV balls, of which k are red and N — k are blue. We
choose n of these balls, without replacement, and define X to be the number of red
balls in our sample. The distribution of X is called the hypergeometric distribution.
We note that this distribution depends upon three parameters, namely N, k, and
n. There does not seem to be a standard notation for this distribution; we will use
the notation h(N,k,n,x) to denote P(X = x). This probability can be found by
noting that there are
N
()

different samples of size n, and the number of such samples with exactly = red balls
is obtained by multiplying the number of ways of choosing = red balls from the set
of k red balls and the number of ways of choosing n — x blue balls from the set of
N — k blue balls. Hence, we have

() (o2)

()

This distribution can be generalized to the case where there are more than two
types of objects. (See Exercise 40.)

If we let N and k tend to oo, in such a way that the ratio k/N remains fixed, then
the hypergeometric distribution tends to the binomial distribution with parameters
n and p = k/N. This is reasonable because if N and k are much larger than n, then
whether we choose our sample with or without replacement should not affect the
probabilities very much, and the experiment consisting of choosing with replacement
yields a binomially distributed random variable (see Exercise 44).

An example of how this distribution might be used is given in Exercises 36 and

h(N,k,n,z) =

37. We now give another example involving the hypergeometric distribution. It
illustrates a statistical test called Fisher’s Exact Test.

Example 5.6 It is often of interest to consider two traits, such as eye color and
hair color, and to ask whether there is an association between the two traits. Two
traits are associated if knowing the value of one of the traits for a given person
allows us to predict the value of the other trait for that person. The stronger the
association, the more accurate the predictions become. If there is no association
between the traits, then we say that the traits are independent. In this example, we
will use the traits of gender and political party, and we will assume that there are
only two possible genders, female and male, and only two possible political parties,
Democratic and Republican.

Suppose that we have collected data concerning these traits. To test whether
there is an association between the traits, we first assume that there is no association
between the two traits. This gives rise to an “expected” data set, in which knowledge
of the value of one trait is of no help in predicting the value of the other trait. Our
collected data set usually differs from this expected data set. If it differs by quite a
bit, then we would tend to reject the assumption of independence of the traits. To



194 CHAPTER 5. DISTRIBUTIONS AND DENSITIES

Democrat Republican
Female 24 4 28
Male 8 14 22
32 18 50

Table 5.2: Observed data.

Democrat Republican
Female S11 S12 tll
Male S21 S99 t12
t21 a2 n

Table 5.3: General data table.

nail down what is meant by “quite a bit,” we decide which possible data sets differ
from the expected data set by at least as much as ours does, and then we compute
the probability that any of these data sets would occur under the assumption of
independence of traits. If this probability is small, then it is unlikely that the
difference between our collected data set and the expected data set is due entirely
to chance.

Suppose that we have collected the data shown in Table 5.2. The row and column
sums are called marginal totals, or marginals. In what follows, we will denote the
row sums by t1; and 12, and the column sums by t2; and tgs. The ijth entry in
the table will be denoted by s;;. Finally, the size of the data set will be denoted
by n. Thus, a general data table will look as shown in Table 5.3. We now explain
the model which will be used to construct the “expected” data set. In the model,
we assume that the two traits are independent. We then put t5; yellow balls and
tao green balls, corresponding to the Democratic and Republican marginals, into
an urn. We draw ¢1; balls, without replacement, from the urn, and call these balls
females. The t2 balls remaining in the urn are called males. In the specific case
under consideration, the probability of getting the actual data under this model is
given by the expression

(52) ()
(s

i.e., a value of the hypergeometric distribution.

We are now ready to construct the expected data set. If we choose 28 balls
out of 50, we should expect to see, on the average, the same percentage of yellow
balls in our sample as in the urn. Thus, we should expect to see, on the average,
28(32/50) = 17.92 = 18 yellow balls in our sample. (See Exercise 36.) The other
expected values are computed in exactly the same way. Thus, the expected data
set is shown in Table 5.4. We note that the value of s1; determines the other
three values in the table, since the marginals are all fixed. Thus, in considering
the possible data sets that could appear in this model, it is enough to consider the
various possible values of s11. In the specific case at hand, what is the probability
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Democrat Republican
Female 18 10 28
Male 14 8 22
32 18 50

Table 5.4: Expected data.

of drawing exactly a yellow balls, i.e., what is the probability that s;; = a? It is

(3a2) (281§a)

(2s)

We are now ready to decide whether our actual data differs from the expected
data set by an amount which is greater than could be reasonably attributed to
chance alone. We note that the expected number of female Democrats is 18, but
the actual number in our data is 24. The other data sets which differ from the
expected data set by more than ours correspond to those where the number of
female Democrats equals 25, 26, 27, or 28. Thus, to obtain the required probability,
we sum the expression in (5.3) from a = 24 to a = 28. We obtain a value of .000395.
Thus, we should reject the hypothesis that the two traits are independent. O

(5.3)

Finally, we turn to the question of how to simulate a hypergeometric random
variable X. Let us assume that the parameters for X are N, k, and n. We imagine
that we have a set of IV balls, labelled from 1 to N. We decree that the first & of
these balls are red, and the rest are blue. Suppose that we have chosen m balls,
and that j of them are red. Then there are k — j red balls left, and N — m balls
left. Thus, our next choice will be red with probability

k—j
N-m’

So at this stage, we choose a random number in [0, 1], and report that a red ball has
been chosen if and only if the random number does not exceed the above expression.
Then we update the values of m and j, and continue until n balls have been chosen.

Benford Distribution

Our next example of a distribution comes from the study of leading digits in data
sets. It turns out that many data sets that occur “in real life” have the property that
the first digits of the data are not uniformly distributed over the set {1,2,...,9}.
Rather, it appears that the digit 1 is most likely to occur, and that the distribution
is monotonically decreasing on the set of possible digits. The Benford distribution
appears, in many cases, to fit such data. Many explanations have been given for the
occurrence of this distribution. Possibly the most convincing explanation is that
this distribution is the only one that is invariant under a change of scale. If one
thinks of certain data sets as somehow “naturally occurring,” then the distribution
should be unaffected by which units are chosen in which to represent the data, i.e.,
the distribution should be invariant under change of scale.
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Figure 5.4: Leading digits in President Clinton’s tax returns.

Theodore Hill? gives a general description of the Benford distribution, when one
considers the first d digits of integers in a data set. We will restrict our attention
to the first digit. In this case, the Benford distribution has distribution function

f(k) =logyo(k + 1) —logy (k) ,

for 1 <k <09.

Mark Nigrini® has advocated the use of the Benford distribution as a means
of testing suspicious financial records such as bookkeeping entries, checks, and tax
returns. His idea is that if someone were to “make up” numbers in these cases,
the person would probably produce numbers that are fairly uniformly distributed,
while if one were to use the actual numbers, the leading digits would roughly follow
the Benford distribution. As an example, Negrini analyzed President Clinton’s tax
returns for a 13-year period. In Figure 5.4, the Benford distribution values are
shown as squares, and the President’s tax return data are shown as circles. One
sees that in this example, the Benford distribution fits the data very well.

This distribution was discovered by the astronomer Simon Newcomb who stated
the following in his paper on the subject: “That the ten digits do not occur with
equal frequency must be evident to anyone making use of logarithm tables, and
noticing how much faster the first pages wear out than the last ones. The first
significant figure is oftener 1 than any other digit, and the frequency diminishes up
to 9.74

2T. P. Hill, “The Significant Digit Phenomenon,” American Mathematical Monthly, vol. 102,
no. 4 (April 1995), pgs. 322-327.

3M. Nigrini, “Detecting Biases and Irregularities in Tabulated Data,” working paper

4S. Newcomb, “Note on the frequency of use of the different digits in natural numbers,” Amer-
ican Journal of Mathematics, vol. 4 (1881), pgs. 39-40.
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Exercises

1 For which of the following random variables would it be appropriate to assign
a uniform distribution?

(a) Let X represent the roll of one die.
(b) Let X represent the number of heads obtained in three tosses of a coin.

(¢) A roulette wheel has 38 possible outcomes: 0, 00, and 1 through 36. Let
X represent the outcome when a roulette wheel is spun.

(d) Let X represent the birthday of a randomly chosen person.

(e) Let X represent the number of tosses of a coin necessary to achieve a
head for the first time.

2 Let n be a positive integer. Let S be the set of integers between 1 and
n. Consider the following process: We remove a number from S and write
it down. We repeat this until S is empty. The result is a permutation of
the integers from 1 to n. Let X denote this permutation. Is X uniformly
distributed?

3 Let X be a random variable which can take on countably many values. Show
that X cannot be uniformly distributed.

4 Suppose we are attending a college which has 3000 students. We wish to
choose a subset of size 100 from the student body. Let X represent the subset,
chosen using the following possible strategies. For which strategies would it
be appropriate to assign the uniform distribution to X7 If it is appropriate,
what probability should we assign to each outcome?

(a) Take the first 100 students who enter the cafeteria to eat lunch.

(b) Ask the Registrar to sort the students by their Social Security number,
and then take the first 100 in the resulting list.

(c) Ask the Registrar for a set of cards, with each card containing the name
of exactly one student, and with each student appearing on exactly one
card. Throw the cards out of a third-story window, then walk outside
and pick up the first 100 cards that you find.

5 Under the same conditions as in the preceding exercise, can you describe
a procedure which, if used, would produce each possible outcome with the
same probability? Can you describe such a procedure that does not rely on a
computer or a calculator?

6 Let X1, X5, ..., X, be n mutually independent random variables, each of
which is uniformly distributed on the integers from 1 to k. Let Y denote the
minimum of the X;’s. Find the distribution of Y.

7 A die is rolled until the first time 7" that a six turns up.

(a) What is the probability distribution for 7'?
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(b) Find P(T > 3).
(¢) Find P(T > 6|T > 3).

If a coin is tossed a sequence of times, what is the probability that the first
head will occur after the fifth toss, given that it has not occurred in the first
two tosses?

A worker for the Department of Fish and Game is assigned the job of esti-
mating the number of trout in a certain lake of modest size. She proceeds as
follows: She catches 100 trout, tags each of them, and puts them back in the
lake. One month later, she catches 100 more trout, and notes that 10 of them
have tags.

(a) Without doing any fancy calculations, give a rough estimate of the num-
ber of trout in the lake.

(b) Let N be the number of trout in the lake. Find an expression, in terms
of N, for the probability that the worker would catch 10 tagged trout
out of the 100 trout that she caught the second time.

(c) Find the value of N which maximizes the expression in part (b). This
value is called the maximum likelihood estimate for the unknown quantity

N. Hint: Consider the ratio of the expressions for successive values of
N.

A census in the United States is an attempt to count everyone in the country.
It is inevitable that many people are not counted. The U. S. Census Bureau
proposed a way to estimate the number of people who were not counted by
the latest census. Their proposal was as follows: In a given locality, let N
denote the actual number of people who live there. Assume that the census
counted n; people living in this area. Now, another census was taken in the
locality, and no people were counted. In addition, nis people were counted
both times.

(a) Given N, ny, and no, let X denote the number of people counted both
times. Find the probability that X = k, where k is a fixed positive
integer between 0 and na.

(b) Now assume that X = my3. Find the value of N which maximizes the
expression in part (a). Hint: Consider the ratio of the expressions for
successive values of V.

Suppose that X is a random variable which represents the number of calls
coming in to a police station in a one-minute interval. In the text, we showed
that X could be modelled using a Poisson distribution with parameter A,
where this parameter represents the average number of incoming calls per
minute. Now suppose that Y is a random variable which represents the num-
ber of incoming calls in an interval of length ¢. Show that the distribution of
Y is given by

o (AP
PY=k)=e o
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i.e., Y is Poisson with parameter At. Hint: Suppose a Martian were to observe
the police station. Let us also assume that the basic time interval used on
Mars is exactly ¢t Earth minutes. Finally, we will assume that the Martian
understands the derivation of the Poisson distribution in the text. What
would she write down for the distribution of Y7

Show that the values of the Poisson distribution given in Equation 5.2 sum to
1.

The Poisson distribution with parameter A = .3 has been assigned for the
outcome of an experiment. Let X be the outcome function. Find P(X = 0),
P(X =1),and P(X >1).

On the average, only 1 person in 1000 has a particular rare blood type.

(a) Find the probability that, in a city of 10,000 people, no one has this
blood type.

(b) How many people would have to be tested to give a probability greater
than 1/2 of finding at least one person with this blood type?

Write a program for the user to input n, p, j and have the program print out
the exact value of b(n, p, k) and the Poisson approximation to this value.

Assume that, during each second, a Dartmouth switchboard receives one call
with probability .01 and no calls with probability .99. Use the Poisson ap-
proximation to estimate the probability that the operator will miss at most
one call if she takes a 5-minute coffee break.

The probability of a royal flush in a poker hand is p = 1/649,740. How large
must n be to render the probability of having no royal flush in n hands smaller
than 1/e?

A baker blends 600 raisins and 400 chocolate chips into a dough mix and,
from this, makes 500 cookies.

(a) Find the probability that a randomly picked cookie will have no raisins.

(b) Find the probability that a randomly picked cookie will have exactly two
chocolate chips.

(c) Find the probability that a randomly chosen cookie will have at least
two bits (raisins or chips) in it.

The probability that, in a bridge deal, one of the four hands has all hearts
is approximately 6.3 x 1072, In a city with about 50,000 bridge players the
resident probability expert is called on the average once a year (usually late at
night) and told that the caller has just been dealt a hand of all hearts. Should
she suspect that some of these callers are the victims of practical jokes?
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An advertiser drops 10,000 leaflets on a city which has 2000 blocks. Assume
that each leaflet has an equal chance of landing on each block. What is the
probability that a particular block will receive no leaflets?

In a class of 80 students, the professor calls on 1 student chosen at random
for a recitation in each class period. There are 32 class periods in a term.

(a) Write a formula for the exact probability that a given student is called
upon j times during the term.

(b) Write a formula for the Poisson approximation for this probability. Using
your formula estimate the probability that a given student is called upon
more than twice.

Assume that we are making raisin cookies. We put a box of 600 raisins into
our dough mix, mix up the dough, then make from the dough 500 cookies.
We then ask for the probability that a randomly chosen cookie will have
0, 1, 2, ... raisins. Consider the cookies as trials in an experiment, and
let X be the random variable which gives the number of raisins in a given
cookie. Then we can regard the number of raisins in a cookie as the result
of n = 600 independent trials with probability p = 1/500 for success on each
trial. Since n is large and p is small, we can use the Poisson approximation
with A = 600(1/500) = 1.2. Determine the probability that a given cookie
will have at least five raisins.

For a certain experiment, the Poisson distribution with parameter A\ = m has
been assigned. Show that a most probable outcome for the experiment is
the integer value k such that m — 1 < k < m. Under what conditions will
there be two most probable values? Hint: Consider the ratio of successive
probabilities.

When John Kemeny was chair of the Mathematics Department at Dartmouth
College, he received an average of ten letters each day. On a certain weekday
he received no mail and wondered if it was a holiday. To decide this he
computed the probability that, in ten years, he would have at least 1 day
without any mail. He assumed that the number of letters he received on a
given day has a Poisson distribution. What probability did he find? Hint:
Apply the Poisson distribution twice. First, to find the probability that, in
3000 days, he will have at least 1 day without mail, assuming each year has
about 300 days on which mail is delivered.

Reese Prosser never puts money in a 10-cent parking meter in Hanover. He
assumes that there is a probability of .05 that he will be caught. The first
offense costs nothing, the second costs 2 dollars, and subsequent offenses cost
5 dollars each. Under his assumptions, how does the expected cost of parking
100 times without paying the meter compare with the cost of paying the meter
each time?
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26

27

28

29

30

31

Number of deaths | Number of corps with & deaths in a given year
0 144
1 91
2 32
3 11
4 2

Table 5.5: Mule kicks.

Feller® discusses the statistics of flying bomb hits in an area in the south of
London during the Second World War. The area in question was divided into
24 x 24 = 576 small areas. The total number of hits was 537. There were
229 squares with 0 hits, 211 with 1 hit, 93 with 2 hits, 35 with 3 hits, 7 with
4 hits, and 1 with 5 or more. Assuming the hits were purely random, use the
Poisson approximation to find the probability that a particular square would
have exactly k hits. Compute the expected number of squares that would
have 0, 1, 2, 3, 4, and 5 or more hits and compare this with the observed
results.

Assume that the probability that there is a significant accident in a nuclear
power plant during one year’s time is .001. If a country has 100 nuclear plants,
estimate the probability that there is at least one such accident during a given
year.

An airline finds that 4 percent of the passengers that make reservations on
a particular flight will not show up. Consequently, their policy is to sell 100
reserved seats on a plane that has only 98 seats. Find the probability that
every person who shows up for the flight will find a seat available.

The king’s coinmaster boxes his coins 500 to a box and puts 1 counterfeit coin
in each box. The king is suspicious, but, instead of testing all the coins in
1 box, he tests 1 coin chosen at random out of each of 500 boxes. What is the
probability that he finds at least one fake? What is it if the king tests 2 coins
from each of 250 boxes?

(From Kemeny®) Show that, if you make 100 bets on the number 17 at
roulette at Monte Carlo (see Example 6.13), you will have a probability greater
than 1/2 of coming out ahead. What is your expected winning?

In one of the first studies of the Poisson distribution, von Bortkiewicz’ con-

sidered the frequency of deaths from kicks in the Prussian army corps. From
the study of 14 corps over a 20-year period, he obtained the data shown in
Table 5.5. Fit a Poisson distribution to this data and see if you think that
the Poisson distribution is appropriate.

5ibid., p. 161.
6Private communication.

L.

von Bortkiewicz, Das Gesetz der Kleinen Zahlen (Leipzig: Teubner, 1898), p. 24.
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It is often assumed that the auto traffic that arrives at the intersection during
a unit time period has a Poisson distribution with expected value m. Assume
that the number of cars X that arrive at an intersection from the north in unit
time has a Poisson distribution with parameter A = m and the number Y that
arrive from the west in unit time has a Poisson distribution with parameter
A =m. If X and Y are independent, show that the total number X + Y
that arrive at the intersection in unit time has a Poisson distribution with
parameter A = m + m.

Cars coming along Magnolia Street come to a fork in the road and have to
choose either Willow Street or Main Street to continue. Assume that the
number of cars that arrive at the fork in unit time has a Poisson distribution
with parameter A = 4. A car arriving at the fork chooses Main Street with
probability 3/4 and Willow Street with probability 1/4. Let X be the random
variable which counts the number of cars that, in a given unit of time, pass
by Joe’s Barber Shop on Main Street. What is the distribution of X7

In the appeal of the People v. Collins case (see Exercise 4.1.28), the counsel
for the defense argued as follows: Suppose, for example, there are 5,000,000
couples in the Los Angeles area and the probability that a randomly chosen
couple fits the witnesses’ description is 1/12,000,000. Then the probability
that there are two such couples given that there is at least one is not at all
small. Find this probability. (The California Supreme Court overturned the
initial guilty verdict.)

A manufactured lot of brass turnbuckles has S items of which D are defective.
A sample of s items is drawn without replacement. Let X be a random variable
that gives the number of defective items in the sample. Let p(d) = P(X = d).

(a) Show that

Thus, X is hypergeometric.

(b) Prove the following identity, known as Fuler’s formula:

MR D\ (S—D\ (S
> ()(C0)-0)
A bin of 1000 turnbuckles has an unknown number D of defectives. A sample
of 100 turnbuckles has 2 defectives. The mazimum likelihood estimate for D
is the number of defectives which gives the highest probability for obtaining

the number of defectives observed in the sample. Guess this number D and
then write a computer program to verify your guess.

There are an unknown number of moose on Isle Royale (a National Park in
Lake Superior). To estimate the number of moose, 50 moose are captured and
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tagged. Six months later 200 moose are captured and it is found that 8 of
these were tagged. Estimate the number of moose on Isle Royale from these
data, and then verify your guess by computer program (see Exercise 36).

38 A manufactured lot of buggy whips has 20 items, of which 5 are defective. A
random sample of 5 items is chosen to be inspected. Find the probability that
the sample contains exactly one defective item

(a) if the sampling is done with replacement.

(b) if the sampling is done without replacement.

39 Suppose that N and k tend to oo in such a way that k/N remains fixed. Show
that

h(N,k,n,z) — b(n,k/N,z) .

40 A bridge deck has 52 cards with 13 cards in each of four suits: spades, hearts,
diamonds, and clubs. A hand of 13 cards is dealt from a shuffled deck. Find
the probability that the hand has

(a) a distribution of suits 4, 4, 3, 2 (for example, four spades, four hearts,
three diamonds, two clubs).

(b) a distribution of suits 5, 3, 3, 2.

41 Write a computer algorithm that simulates a hypergeometric random variable
with parameters N, k, and n.

42 You are presented with four different dice. The first one has two sides marked 0
and four sides marked 4. The second one has a 3 on every side. The third one
has a 2 on four sides and a 6 on two sides, and the fourth one has a 1 on three
sides and a 5 on three sides. You allow your friend to pick any of the four
dice he wishes. Then you pick one of the remaining three and you each roll
your die. The person with the largest number showing wins a dollar. Show
that you can choose your die so that you have probability 2/3 of winning no
matter which die your friend picks. (See Tenney and Foster.®)

43 The students in a certain class were classified by hair color and eye color. The
conventions used were: Brown and black hair were considered dark, and red
and blonde hair were considered light; black and brown eyes were considered
dark, and blue and green eyes were considered light. They collected the data
shown in Table 5.6. Are these traits independent? (See Example 5.6.)

44 Suppose that in the hypergeometric distribution, we let NV and k tend to oo in
such a way that the ratio k/N approaches a real number p between 0 and 1.
Show that the hypergeometric distribution tends to the binomial distribution
with parameters n and p.

8R. L. Tenney and C. C. Foster, Non-transitive Dominance, Math. Mag. 49 (1976) no. 3, pgs.
115-120.
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Dark Eyes | Light Eyes
Dark Hair 28 15 43
Light Hair 9 23 32
37 38 75

Table 5.6: Observed data.

3500 |
3000 | of®|alt(o[®
2500 | o790  Tlel9e
2000 f ° 16dhi
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Ot . . . .
0 10 20 30 40

Figure 5.5: Distribution of choices in the Powerball lottery.

(a) Compute the leading digits of the first 100 powers of 2, and see how well
these data fit the Benford distribution.

(b) Multiply each number in the data set of part (a) by 3, and compare the
distribution of the leading digits with the Benford distribution.

In the Powerball lottery, contestants pick 5 different integers between 1 and 45,
and in addition, pick a bonus integer from the same range (the bonus integer
can equal one of the first five integers chosen). Some contestants choose the
numbers themselves, and others let the computer choose the numbers. The
data shown in Table 5.7 are the contestant-chosen numbers in a certain state
on May 3, 1996. A spike graph of the data is shown in Figure 5.5.

The goal of this problem is to check the hypothesis that the chosen numbers are
uniformly distributed. To do this, compute the value v of the random variable
x? given in Example 5.10. In the present case, this random variable has 44
degrees of freedom. One can find, in a y? table, the value vy = 59.43 , which
represents a number with the property that a x2-distributed random variable
takes on values that exceed vy only 5% of the time. Does your computed value
of v exceed vy? If so, you should reject the hypothesis that the contestants’
choices are uniformly distributed.
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Integer Times  Integer Times  Integer Times

Chosen Chosen Chosen
1 2646 2 2934 3 3352
4 3000 5 3357 6 2892
7 3657 8 3025 9 3362
10 2985 11 3138 12 3043
13 2690 14 2423 15 2556
16 2456 17 2479 18 2276
19 2304 20 1971 21 2543
22 2678 23 2729 24 2414
25 2616 26 2426 27 2381
28 2059 29 2039 30 2298
31 2081 32 1508 33 1887
34 1463 35 1594 36 1354
37 1049 38 1165 39 1248
40 1493 41 1322 42 1423
43 1207 44 1259 45 1224

Table 5.7: Numbers chosen by contestants in the Powerball lottery.

5.2 Important Densities

In this section, we will introduce some important probability density functions and
give some examples of their use. We will also consider the question of how one
simulates a given density using a computer.

Continuous Uniform Density

The simplest density function corresponds to the random variable U whose value
represents the outcome of the experiment consisting of choosing a real number at
random from the interval [a, b].

f(w){l/(ba)’ if a <w <,

0, otherwise.

It is easy to simulate this density on a computer. We simply calculate the
expression
(b—a)yrnd+a .

Exponential and Gamma Densities

The exponential density function is defined by

f(@) = Ae ™ if 0< 2 < oo,
B 0, otherwise.

Here )\ is any positive constant, depending on the experiment. The reader has seen
this density in Example 2.17. In Figure 5.6 we show graphs of several exponen-
tial densities for different choices of A. The exponential density is often used to
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A=2

A=l

A=12

Figure 5.6: Exponential densities.

describe experiments involving a question of the form: How long until something
happens? For example, the exponential density is often used to study the time
between emissions of particles from a radioactive source.

The cumulative distribution function of the exponential density is easy to com-
pute. Let T be an exponentially distributed random variable with parameter \. If
x > 0, then we have

F(z)

P(T <x)

= / Ae M dt
0

= l—e®

Both the exponential density and the geometric distribution share a property
known as the “memoryless” property. This property was introduced in Example 5.1;
it says that

PT>r+s|T>r)=P(T>5s).

This can be demonstrated to hold for the exponential density by computing both
sides of this equation. The right-hand side is just

1—F(s)=e

while the left-hand side is

PT'>r+s)  1—-F(r+s)
P(T>r)  1-—F(s)
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67/\(T+S)
e—Ar
—As

There is a very important relationship between the exponential density and
the Poisson distribution. We begin by defining X, Xs, ... to be a sequence of
independent exponentially distributed random variables with parameter A. We
might think of X; as denoting the amount of time between the ith and (i + 1)st
emissions of a particle by a radioactive source. (As we shall see in Chapter 6, we
can think of the parameter A as representing the reciprocal of the average length of
time between emissions. This parameter is a quantity that might be measured in
an actual experiment of this type.)

We now consider a time interval of length ¢, and we let Y denote the random
variable which counts the number of emissions that occur in the time interval. We
would like to calculate the distribution function of Y (clearly, Y is a discrete random
variable). If we let S,, denote the sum X; + X5 4 -+ + X,,, then it is easy to see
that

P(Y=n)=P(S, <tand S,y1 >1).

Since the event S, 11 <t is a subset of the event S,, < t, the above probability is
seen to be equal to
P(S, <t) = P(Spy1 < 1) . (5.4)

We will show in Chapter 7 that the density of S, is given by the following formula:

n—1)!
0, otherwise.

{ PGS P C T >0
gn(z) = ( ' ,
This density is an example of a gamma density with parameters A and n. The
general gamma density allows n to be any positive real number. We shall not
discuss this general density.

It is easy to show by induction on n that the cumulative distribution function
of S, is given by:

=z Az . ()\a:)"_l .
Go(z) = 1—e (1 A T ), ifx >0,

0, otherwise.
Using this expression, the quantity in (5.4) is easy to compute; we obtain

Y (At)"

n!
which the reader will recognize as the probability that a Poisson-distributed random
variable, with parameter \t, takes on the value n.

The above relationship will allow us to simulate a Poisson distribution, once
we have found a way to simulate an exponential density. The following random

variable does the job:
1
Y = 3 log(rnd) . (5.5)
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Using Corollary 5.2 (below), one can derive the above expression (see Exercise 3).
We content ourselves for now with a short calculation that should convince the
reader that the random variable Y has the required property. We have

PY<y) = P(—% log(rnd) < y)
= P(log(rnd) > —\y)

P(rnd > e~ )
1—e v,

This last expression is seen to be the cumulative distribution function of an expo-
nentially distributed random variable with parameter .

To simulate a Poisson random variable W with parameter \, we simply generate
a sequence of values of an exponentially distributed random variable with the same
parameter, and keep track of the subtotals Sy of these values. We stop generating
the sequence when the subtotal first exceeds A. Assume that we find that

Sn < A< S7L+1 .

Then the value n is returned as a simulated value for W.

Example 5.7 (Queues) Suppose that customers arrive at random times at a service
station with one server, and suppose that each customer is served immediately if
no one is ahead of him, but must wait his turn in line otherwise. How long should
each customer expect to wait? (We define the waiting time of a customer to be the
length of time between the time that he arrives and the time that he begins to be

served.)
Let us assume that the interarrival times between successive customers are given
by random variables X1, X5, ..., X,, that are mutually independent and identically

distributed with an exponential cumulative distribution function given by
Fx(t) =1- 6_/\t.

Let us assume, too, that the service times for successive customers are given by
random variables Y7, Y5, ..., Y, that again are mutually independent and identically
distributed with another exponential cumulative distribution function given by

Fy(t) =1—e M,

The parameters A and p represent, respectively, the reciprocals of the average
time between arrivals of customers and the average service time of the customers.
Thus, for example, the larger the value of A, the smaller the average time between
arrivals of customers. We can guess that the length of time a customer will spend
in the queue depends on the relative sizes of the average interarrival time and the
average service time.

It is easy to verify this conjecture by simulation. The program Queue simulates
this queueing process. Let N(t) be the number of customers in the queue at time ¢.
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Figure 5.7: Queue sizes.
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Figure 5.8: Waiting times.

Then we plot N(t) as a function of ¢ for different choices of the parameters A and
1 (see Figure 5.7).

We note that when A\ < u, then 1/X > 1/u, so the average interarrival time is
greater than the average service time, i.e., customers are served more quickly, on
average, than new ones arrive. Thus, in this case, it is reasonable to expect that
N(t) remains small. However, if A > u then customers arrive more quickly than
they are served, and, as expected, N(¢) appears to grow without limit.

We can now ask: How long will a customer have to wait in the queue for service?
To examine this question, we let W; be the length of time that the ¢th customer has
to remain in the system (waiting in line and being served). Then we can present
these data in a bar graph, using the program Queue, to give some idea of how the
W, are distributed (see Figure 5.8). (Here A =1 and p=1.1.)

We see that these waiting times appear to be distributed exponentially. This is
always the case when A < p. The proof of this fact is too complicated to give here,
but we can verify it by simulation for different choices of A and p, as above. O
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Functions of a Random Variable

Before continuing our list of important densities, we pause to consider random
variables which are functions of other random variables. We will prove a general
theorem that will allow us to derive expressions such as Equation 5.5.

Theorem 5.1 Let X be a continuous random variable, and suppose that ¢(x) is a
strictly increasing function on the range of X. Define Y = ¢(X). Suppose that X
and Y have cumulative distribution functions F'x and Fy respectively. Then these
functions are related by

Fy(y) = Fx(¢~'(y))-
If ¢(x) is strictly decreasing on the range of X, then

Fy(y)=1-Fx(¢ (y)) .

Proof. Since ¢ is a strictly increasing function on the range of X, the events
(X < ¢71(y)) and (¢p(X) < y) are equal. Thus, we have

Fy(y) = PY <y)
P(¢(X) <vy)
= P(X<¢ '(y)
= Fx(¢'(y)) -

If ¢(x) is strictly decreasing on the range of X, then we have

Fy(y) = PY <y)
P(p(X) <)
P(X > ¢ '(y))
= 1-P(X <¢ ()
= 1-Fx(¢o '(y)) -

This completes the proof. O

Corollary 5.1 Let X be a continuous random variable, and suppose that ¢(z) is a
strictly increasing function on the range of X. Define Y = ¢(X). Suppose that the
density functions of X and Y are fx and fy, respectively. Then these functions

are related by .
frly) = fx(cb’l(y))d—ydfl(y) :

If ¢(x) is strictly decreasing on the range of X, then

d

fy(y) = —fx(sb’l(y))d—yfl(y) :
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Proof. This result follows from Theorem 5.1 by using the Chain Rule. O

If the function ¢ is neither strictly increasing nor strictly decreasing, then the
situation is somewhat more complicated but can be treated by the same methods.
For example, suppose that Y = X2 Then ¢(z) = 22, and

Fy(y) = PY <y)
= P(-Vy<X<+vy)
P(X <+y) - P(X < —/y)
= Fx(Vy) - Fx(=vy) -

Moreover,

Fy (y)

d
o

- d%(FXW@ — Fx(—v@))
(1

WD+ I VD) 5

We see that in order to express Fy in terms of F'x when Y = ¢(X), we have to
express P(Y < g) in terms of P(X < z), and this process will depend in general
upon the structure of ¢.

Simulation

Theorem 5.1 tells us, among other things, how to simulate on the computer a random
variable Y with a prescribed cumulative distribution function F'. We assume that
F(y) is strictly increasing for those values of y where 0 < F(y) < 1. For this
purpose, let U be a random variable which is uniformly distributed on [0, 1]. Then
U has cumulative distribution function Fy(u) = w. Now, if F' is the prescribed
cumulative distribution function for Y, then to write Y in terms of U we first solve
the equation

Fy) =u

for y in terms of u. We obtain y = F~!(u). Note that since F is an increasing
function this equation always has a unique solution (see Figure 5.9). Then we set
Z = F~Y(U) and obtain, by Theorem 5.1,

Fz(y) = Fu(F(y)) = F(y) ,

since Fy(u) = u. Therefore, Z and Y have the same cumulative distribution func-
tion. Summarizing, we have the following.
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Figure 5.9: Converting a uniform distribution Fy into a prescribed distribution Fy .

Corollary 5.2 If F(y) is a given cumulative distribution function that is strictly
increasing when 0 < F(y) < 1 and if U is a random variable with uniform distribu-
tion on [0, 1], then

Y = F~Y(U)

has the cumulative distribution F(y). O

Thus, to simulate a random variable with a given cumulative distribution F' we
need only set Y = F~!(rnd).

Normal Density

We now come to the most important density function, the normal density function.
We have seen in Chapter 3 that the binomial distribution functions are bell-shaped,
even for moderate size values of n. We recall that a binomially-distributed random
variable with parameters n and p can be considered to be the sum of n mutually
independent 0-1 random variables. A very important theorem in probability theory,
called the Central Limit Theorem, states that under very general conditions, if we
sum a large number of mutually independent random variables, then the distribution
of the sum can be closely approximated by a certain specific continuous density,
called the normal density. This theorem will be discussed in Chapter 9.
The normal density function with parameters p and o is defined as follows:
Fxe (@) = o e—(a=n)?/20?
X N .

The parameter u represents the “center” of the density (and in Chapter 6, we will
show that it is the average, or expected, value of the density). The parameter o
is a measure of the “spread” of the density, and thus it is assumed to be positive.
(In Chapter 6, we will show that o is the standard deviation of the density.) We
note that it is not at all obvious that the above function is a density, i.e., that its
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Figure 5.10: Normal density for two sets of parameter values.

integral over the real line equals 1. The cumulative distribution function is given
by the formula

z 1
Fx(x) = / e~ (u=m)?/20% gy

—oo V21O

In Figure 5.10 we have included for comparison a plot of the normal density for
the cases y =0 and 0 =1, and g =0 and o = 2.

One cannot write F'x in terms of simple functions. This leads to several prob-
lems. First of all, values of F'x must be computed using numerical integration.
Extensive tables exist containing values of this function (see Appendix A). Sec-
ondly, we cannot write F'y 1 in closed form, so we cannot use Corollary 5.2 to help
us simulate a normal random variable. For this reason, special methods have been
developed for simulating a normal distribution. One such method relies on the fact
that if U and V are independent random variables with uniform densities on [0, 1],
then the random variables

X =+/—2logU cos 27V

and
Y =+/—2logUsin27V

are independent, and have normal density functions with parameters p = 0 and
o = 1. (This is not obvious, nor shall we prove it here. See Box and Muller.?)

Let Z be a normal random variable with parameters y = 0 and ¢ = 1. A
normal random variable with these parameters is said to be a standard normal
random variable. It is an important and useful fact that if we write

X=0Z+p,

then X is a normal random variable with parameters p and o. To show this, we
will use Theorem 5.1. We have ¢(z2) = 0z + u, ¢~ 1(z) = (x — p)/o, and

Fx(z) = Fy (:c—u) ,

g

9G. E. P. Box and M. E. Muller, A Note on the Generation of Random Normal Deviates, Ann.
of Math. Stat. 29 (1958), pgs. 610-611.
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T — 1
I ( “) -
o o
— 1 o (@—n)?/20%
2mo

fx(x)

The reader will note that this last expression is the density function with parameters
w and o, as claimed.

We have seen above that it is possible to simulate a standard normal random
variable Z. If we wish to simulate a normal random variable X with parameters p
and o, then we need only transform the simulated values for Z using the equation
X =0Z+p.

Suppose that we wish to calculate the value of a cumulative distribution function
for the normal random variable X, with parameters p and o. We can reduce this
calculation to one concerning the standard normal random variable Z as follows:

Fx(z)

P(X < z)
P<Z§$U“>
Fz (3”;“) .

This last expression can be found in a table of values of the cumulative distribution

function for a standard normal random variable. Thus, we see that it is unnecessary
to make tables of normal distribution functions with arbitrary p and o.

The process of changing a normal random variable to a standard normal ran-
dom variable is known as standardization. If X has a normal distribution with

parameters p and o and if
X—p

)

7 =

o
then Z is said to be the standardized version of X.

The following example shows how we use the standardized version of a normal
random variable X to compute specific probabilities relating to X.

Example 5.8 Suppose that X is a normally distributed random variable with pa-
rameters p = 10 and ¢ = 3. Find the probability that X is between 4 and 16.

To solve this problem, we note that Z = (X — 10)/3 is the standardized version
of X. So, we have

PU<X<16) = P(X<16)— P(X <4)
= Fx(16) — Fx(4)

16 — 10 4-10
- (557 - (57)

= Fz(2) - Fz(-2).
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Figure 5.11: Distribution of dart distances in 1000 drops.

This last expression can be evaluated by using tabulated values of the standard
normal distribution function (see 12.3); when we use this table, we find that Fz(2) =
9772 and Fz(—2) = .0228. Thus, the answer is .9544.

In Chapter 6, we will see that the parameter p is the mean, or average value, of
the random variable X. The parameter o is a measure of the spread of the random
variable, and is called the standard deviation. Thus, the question asked in this
example is of a typical type, namely, what is the probability that a random variable
has a value within two standard deviations of its average value. O

Maxwell and Rayleigh Densities

Example 5.9 Suppose that we drop a dart on a large table top, which we consider
as the zy-plane, and suppose that the z and y coordinates of the dart point are
independent and have a normal distribution with parameters p = 0 and ¢ = 1.
How is the distance of the point from the origin distributed?

This problem arises in physics when it is assumed that a moving particle in
R™ has components of the velocity that are mutually independent and normally
distributed and it is desired to find the density of the speed of the particle. The
density in the case n = 3 is called the Maxwell density.

The density in the case n = 2 (i.e. the dart board experiment described above)
is called the Rayleigh density. We can simulate this case by picking independently a
pair of coordinates (z,y), each from a normal distribution with 4 =0 and o = 1 on
(=00, 00), calculating the distance r = y/x2 4+ y?2 of the point (z,y) from the origin,
repeating this process a large number of times, and then presenting the results in a
bar graph. The results are shown in Figure 5.11.
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Female Male
A 37 56 93
B 63 60 123
C 47 43 90
Below C 5 8 13
152 167 319

Table 5.8: Calculus class data.

Female Male
A 44.3 48.7 93
B 58.6 64.4 123
C 42.9 47.1 90
Below C 6.2 6.8 13
152 167 319

Table 5.9: Expected data.

We have also plotted the theoretical density
flr)y= re /2

This will be derived in Chapter 7; see Example 7.7. a

Chi-Squared Density

We return to the problem of independence of traits discussed in Example 5.6. It
is frequently the case that we have two traits, each of which have several different
values. As was seen in the example, quite a lot of calculation was needed even
in the case of two values for each trait. We now give another method for testing
independence of traits, which involves much less calculation.

Example 5.10 Suppose that we have the data shown in Table 5.8 concerning
grades and gender of students in a Calculus class. We can use the same sort of
model in this situation as was used in Example 5.6. We imagine that we have an
urn with 319 balls of two colors, say blue and red, corresponding to females and
males, respectively. We now draw 93 balls, without replacement, from the urn.
These balls correspond to the grade of A. We continue by drawing 123 balls, which
correspond to the grade of B. When we finish, we have four sets of balls, with each
ball belonging to exactly one set. (We could have stipulated that the balls were
of four colors, corresponding to the four possible grades. In this case, we would
draw a subset of size 152, which would correspond to the females. The balls re-
maining in the urn would correspond to the males. The choice does not affect the
final determination of whether we should reject the hypothesis of independence of
traits.)

The expected data set can be determined in exactly the same way as in Exam-
ple 5.6. If we do this, we obtain the expected values shown in Table 5.9. Even if
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the traits are independent, we would still expect to see some differences between
the numbers in corresponding boxes in the two tables. However, if the differences
are large, then we might suspect that the two traits are not independent. In Ex-
ample 5.6, we used the probability distribution of the various possible data sets to
compute the probability of finding a data set that differs from the expected data
set by at least as much as the actual data set does. We could do the same in this
case, but the amount of computation is enormous.

Instead, we will describe a single number which does a good job of measuring
how far a given data set is from the expected one. To quantify how far apart the two
sets of numbers are, we could sum the squares of the differences of the corresponding
numbers. (We could also sum the absolute values of the differences, but we would
not want to sum the differences.) Suppose that we have data in which we expect
to see 10 objects of a certain type, but instead we see 18, while in another case we
expect to see 50 objects of a certain type, but instead we see 58. Even though the
two differences are about the same, the first difference is more surprising than the
second, since the expected number of outcomes in the second case is quite a bit
larger than the expected number in the first case. One way to correct for this is
to divide the individual squares of the differences by the expected number for that
box. Thus, if we label the values in the eight boxes in the first table by O; (for
observed values) and the values in the eight boxes in the second table by E; (for
expected values), then the following expression might be a reasonable one to use to
measure how far the observed data is from what is expected:

i (0: = Ei)*

i=1 Ei

This expression is a random variable, which is usually denoted by the symbol x?2,
pronounced “ki-squared.” It is called this because, under the assumption of inde-
pendence of the two traits, the density of this random variable can be computed and
is approximately equal to a density called the chi-squared density. We choose not
to give the explicit expression for this density, since it involves the gamma function,
which we have not discussed. The chi-squared density is, in fact, a special case of
the general gamma density.

In applying the chi-squared density, tables of values of this density are used, as
in the case of the normal density. The chi-squared density has one parameter n,
which is called the number of degrees of freedom. The number n is usually easy to
determine from the problem at hand. For example, if we are checking two traits for
independence, and the two traits have a and b values, respectively, then the number
of degrees of freedom of the random variable x? is (a —1)(b—1). So, in the example
at hand, the number of degrees of freedom is 3.

We recall that in this example, we are trying to test for independence of the
two traits of gender and grades. If we assume these traits are independent, then
the ball-and-urn model given above gives us a way to simulate the experiment.
Using a computer, we have performed 1000 experiments, and for each one, we have
calculated a value of the random variable x2. The results are shown in Figure 5.12,
together with the chi-squared density function with three degrees of freedom.
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Figure 5.12: Chi-squared density with three degrees of freedom.

As we stated above, if the value of the random variable x? is large, then we
would tend not to believe that the two traits are independent. But how large is
large? The actual value of this random variable for the data above is 4.13. In
Figure 5.12, we have shown the chi-squared density with 3 degrees of freedom. It
can be seen that the value 4.13 is larger than most of the values taken on by this
random variable.

Typically, a statistician will compute the value v of the random variable x?2,
just as we have done. Then, by looking in a table of values of the chi-squared
density, a value vg is determined which is only exceeded 5% of the time. If v > v,
the statistician rejects the hypothesis that the two traits are independent. In the
present case, vy = 7.815, so we would not reject the hypothesis that the two traits
are independent. O

Cauchy Density

The following example is from Feller.'°

Example 5.11 Suppose that a mirror is mounted on a vertical axis, and is free
to revolve about that axis. The axis of the mirror is 1 foot from a straight wall
of infinite length. A pulse of light is shown onto the mirror, and the reflected ray
hits the wall. Let ¢ be the angle between the reflected ray and the line that is
perpendicular to the wall and that runs through the axis of the mirror. We assume
that ¢ is uniformly distributed between —m/2 and 7/2. Let X represent the distance
between the point on the wall that is hit by the reflected ray and the point on the
wall that is closest to the axis of the mirror. We now determine the density of X.

Let B be a fixed positive quantity. Then X > B if and only if tan(¢) > B,
which happens if and only if ¢ > arctan(B). This happens with probability

/2 — arctan(B)
— -

LOW. Feller, An Introduction to Probability Theory and Its Applications,, vol. 2, (New York:
Wiley, 1966)



5.2. IMPORTANT DENSITIES 219

Thus, for positive B, the cumulative distribution function of X is

/2 — arctan(B)
- :

F(B)=1-

Therefore, the density function for positive B is

1
f(B)=m~

Since the physical situation is symmetric with respect to ¢ = 0, it is easy to see
that the above expression for the density is correct for negative values of B as well.

The Law of Large Numbers, which we will discuss in Chapter 8, states that
in many cases, if we take the average of independent values of a random variable,
then the average approaches a specific number as the number of values increases.
It turns out that if one does this with a Cauchy-distributed random variable, the
average does not approach any specific number. O

Exercises

1 Choose a number U from the unit interval [0, 1] with uniform distribution.
Find the cumulative distribution and density for the random variables

(a) Y =U+2.
(b) Y = US3.
2 Choose a number U from the interval [0, 1] with uniform distribution. Find
the cumulative distribution and density for the random variables
(a) Y=1/(U+1).
(b) Y =log(U +1).
3 Use Corollary 5.2 to derive the expression for the random variable given in

Equation 5.5. Hint: The random variables 1 — rnd and rnd are identically
distributed.

4 Suppose we know a random variable Y as a function of the uniform random
variable U: Y = ¢(U), and suppose we have calculated the cumulative dis-
tribution function Fy (y) and thence the density fy(y). How can we check
whether our answer is correct? An easy simulation provides the answer: Make
a bar graph of Y = ¢(rnd) and compare the result with the graph of fy (y).
These graphs should look similar. Check your answers to Exercises 1 and 2
by this method.

5 Choose a number U from the interval [0, 1] with uniform distribution. Find
the cumulative distribution and density for the random variables

(a) Y = |U —1/2].
(b) YV = (U - 1/2)2.
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Check your results for Exercise 5 by simulation as described in Exercise 4.

Explain how you can generate a random variable whose cumulative distribu-
tion function is

0, ifx<0,
F(z)=< 22, ifo<z<1,
1, ifz>1.

Write a program to generate a sample of 1000 random outcomes each of which
is chosen from the distribution given in Exercise 7. Plot a bar graph of your
results and compare this empirical density with the density for the cumulative
distribution given in Exercise 7.

Let U, V be random numbers chosen independently from the interval [0, 1]
with uniform distribution. Find the cumulative distribution and density of
each of the variables

(a) Y=U+V.

(b) Y=|U-V]
Let U, V be random numbers chosen independently from the interval [0, 1].
Find the cumulative distribution and density for the random variables

(a) Y = max(U,V).

(b) Y =min(U,V).
Write a program to simulate the random variables of Exercises 9 and 10 and

plot a bar graph of the results. Compare the resulting empirical density with
the density found in Exercises 9 and 10.

A number U is chosen at random in the interval [0, 1]. Find the probability
that

(a) R=U? < 1/4.

(b)y S=U(1-U) < 1/4.

() T=U/(1-U) < 1/4.

Find the cumulative distribution function F' and the density function f for
each of the random variables R, S, and T in Exercise 12.

A point P in the unit square has coordinates X and Y chosen at random in
the interval [0,1]. Let D be the distance from P to the nearest edge of the
square, and F the distance to the nearest corner. What is the probability
that

(a) D <1/4?
(b) E < 1/47

In Exercise 14 find the cumulative distribution F' and density f for the random
variable D.
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16 Let X be a random variable with density function

fX(lU)Z{ ng(l_x)’ if0o<z <1,

otherwise.

(a) What is the value of ¢?
(b) What is the cumulative distribution function Fx for X7
(c) What is the probability that X < 1/47

17 Let X be a random variable with cumulative distribution function

0, if r <0,
F(x) = sin?(rz/2), if0<x <1,
1, if1<

(a) What is the density function fx for X?
(b) What is the probability that X < 1/47

18 Let X be a random variable with cumulative distribution function Fy, and
let Y =X+4+0b, Z=0aX,and W = aX + b, where a and b are any constants.
Find the cumulative distribution functions Fy, Fz, and Fy . Hint: The cases
a>0,a =0, and a < 0 require different arguments.

19 Let X be a random variable with density function fx, and let Y = X + b,
Z =aX,and W = aX + b, where a # 0. Find the density functions fy, fz,
and fy. (See Exercise 18.)

20 Let X be a random variable uniformly distributed over [c,d], and let Y =
aX +b. For what choice of @ and b is Y uniformly distributed over [0, 1]?

21 Let X be a random variable with cumulative distribution function F' strictly
increasing on the range of X. Let Y = F(X). Show that Y is uniformly
distributed in the interval [0,1]. (The formula X = F~1(Y) then tells us how
to construct X from a uniform random variable Y'.)

22 Let X be a random variable with cumulative distribution function F. The
median of X is the value m for which F(m) = 1/2. Then X < m with
probability 1/2 and X > m with probability 1/2. Find m if X is

(a) uniformly distributed over the interval [a, b].
(b) normally distributed with parameters p and o.
(c) exponentially distributed with parameter .
23 Let X be a random variable with density function fx. The mean of X is
the value p = [ fy(x)dz. Then p gives an average value for X (see Sec-

tion 6.3). Find p if X is distributed uniformly, normally, or exponentially, as
in Exercise 22.
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Test Score Letter grade
uto<zx
p<zr<pu+o
pu—o<zr<pu
p—20<z<p—o
T < pu—20

Mg Qw >

Table 5.10: Grading on the curve.

Let X be a random variable with density function fx. The mode of X is the
value M for which f(M) is maximum. Then values of X near M are most
likely to occur. Find M if X is distributed normally or exponentially, as in
Exercise 22. What happens if X is distributed uniformly?

Let X be a random variable normally distributed with parameters p = 70,
o = 10. Estimate

Bridies’ Bearing Works manufactures bearing shafts whose diameters are nor-
mally distributed with parameters u = 1, 0 = .002. The buyer’s specifications
require these diameters to be 1.000 =+ .003 cm. What fraction of the manu-
facturer’s shafts are likely to be rejected? If the manufacturer improves her
quality control, she can reduce the value of . What value of ¢ will ensure
that no more than 1 percent of her shafts are likely to be rejected?

A final examination at Podunk University is constructed so that the test
scores are approximately normally distributed, with parameters p and o. The
instructor assigns letter grades to the test scores as shown in Table 5.10 (this
is the process of “grading on the curve”).

What fraction of the class gets A, B, C, D, F?

(Ross!!) An expert witness in a paternity suit testifies that the length (in
days) of a pregnancy, from conception to delivery, is approximately normally
distributed, with parameters p = 270, 0 = 10. The defendant in the suit is
able to prove that he was out of the country during the period from 290 to 240
days before the birth of the child. What is the probability that the defendant
was in the country when the child was conceived?

Suppose that the time (in hours) required to repair a car is an exponentially
distributed random variable with parameter A = 1/2. What is the probabil-
ity that the repair time exceeds 4 hours? If it exceeds 4 hours what is the
probability that it exceeds 8 hours?

s,

Ross, A First Course in Probability Theory, 2d ed. (New York: Macmillan, 1984).
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30

31

32

33

34

Suppose that the number of years a car will run is exponentially distributed
with parameter u = 1/4. If Prosser buys a used car today, what is the
probability that it will still run after 4 years?

Let U be a uniformly distributed random variable on [0,1]. What is the
probability that the equation

22 +4Uz+1=0
has two distinct real roots z; and x5?

Write a program to simulate the random variables whose densities are given
by the following, making a suitable bar graph of each and comparing the exact
density with the bar graph.

Suppose we are observing a process such that the time between occurrences
is exponentially distributed with A = 1/30 (i.e., the average time between
occurrences is 30 minutes). Suppose that the process starts at a certain time
and we start observing the process 3 hours later. Write a program to simulate
this process. Let T denote the length of time that we have to wait, after we
start our observation, for an occurrence. Have your program keep track of 7.
What is an estimate for the average value of T7

Jones puts in two new lightbulbs: a 60 watt bulb and a 100 watt bulb. It
is claimed that the lifetime of the 60 watt bulb has an exponential density
with average lifetime 200 hours (A = 1/200). The 100 watt bulb also has an
exponential density but with average lifetime of only 100 hours (A = 1/100).
Jones wonders what is the probability that the 100 watt bulb will outlast the
60 watt bulb.

If X and Y are two independent random variables with exponential densities
f(x) = Ae™% and g(x) = pe ", respectively, then the probability that X is
less than Y is given by

P(X <) = / " f@)(1 - Gla)) de,

where G(x) is the cumulative distribution function for g(z). Explain why this
is the case. Use this to show that

A

and to answer Jones’s question.



224

35

36

37

38

CHAPTER 5. DISTRIBUTIONS AND DENSITIES

Consider the simple queueing process of Example 5.7. Suppose that you watch
the size of the queue. If there are j people in the queue the next time the
queue size changes it will either decrease to j — 1 or increase to j + 1. Use
the result of Exercise 34 to show that the probability that the queue size
decreases to j — 1 is u/(u + A) and the probability that it increases to j + 1
is A/(+ A). When the queue size is 0 it can only increase to 1. Write a
program to simulate the queue size. Use this simulation to help formulate a
conjecture containing conditions on g and A that will ensure that the queue
will have times when it is empty.

Let X be a random variable having an exponential density with parameter \.
Find the density for the random variable Y = rX, where r is a positive real
number.

Let X be a random variable having a normal density and consider the random
variable Y = eX. Then Y has a log normal density. Find this density of Y.

Let X; and X5 be independent random variables and for i = 1,2, let Y; =
¢:(X;), where ¢; is strictly increasing on the range of X;. Show that Y7 and
Y5 are independent. Note that the same result is true without the assumption
that the ¢;’s are strictly increasing, but the proof is more difficult.



