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ABSTRACT

In this paper a mathematical model of card shuffling is constructed,
and used to determine how much shuffling is necessary to randomize a
deck of cards. The crucial aspect of this model is rising sequences of
permutations, or equivalently descents in their inverses. The probability
of an arrangement of cards occuring under shuffling is a function only
of the number of rising sequences in the permutation. This fact makes
computation of variation distance, a measure of randomness, feasible;
for in an n card deck there are at most n rising sequences but n! possible
arrangements. This computation is done exactly for n = 52, and other
approximation methods are considered.

1 INTRODUCTION

How many times do you have to shuffle a deck of cards in order to mix
them reasonably well? The answer is about seven for a deck of fifty-
two cards, or so claims Persi Diaconis. This somewhat surprising result
made the New York Times [5] a few years ago. It can be seen by an
intriguing and yet understandable analysis of the process of shuffling.
This paper is an exposition of such an analysis in Bayer and Diaconis [2],
though many people have done work on shuffling. These have included
E. Gilbert and Claude Shannon at Bell Labs in the 50’s, and more
recently Jim Reeds and David Aldous.

1This article was written for the Chance Project at Dartmouth College supported
by the National Science Foundation and The New England Consortium for Under-
graduate Education.
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2 WHAT IS A SHUFFLE, REALLY?

2.1 Permutations

Let us suppose we have a deck of n cards, labeled by the integers from
1 to n. We will write the deck with the order of the cards going from
left to right, so that a virgin unshuffled deck would be written 123 · · ·n.
Hereafter we will call this the natural order. The deck after complete
reversal would look like n · · · 321.

A concise mathematical way to think about changing orderings of
the deck is given by permutations. A permutation of n things is just a
one-to-one map from the set of integers, between 1 and n inclusive, to
itself. Let Sn stand for the set of all such permutations. We will write
the permutations in Sn by lower case Greek letters, such as π, and can
associate with each permutation a way of rearranging the deck. This
will be done so that the card in position i after the deck is rearranged
was in position π(i) before the deck was rearranged. For instance,
consider the rearrangement of a 5 card deck by moving the first card
to the end of the deck and every other card up one position. The
corresponding permutation π1 would be written

i 1 2 3 4 5
π1(i) 2 3 4 5 1

Or consider the so-called “perfect shuffle” rearrangement of an 8 card
deck, which is accomplished by cutting the deck exactly in half and then
alternating cards from each half, such that the top card comes from the
top half and the bottom card from the bottom half. The corresponding
permutation π2 is

i 1 2 3 4 5 6 7 8
π2(i) 1 5 2 6 3 7 4 8

Now we don’t always want to give a small table to specify permutations.
So we may condense notation and just write the second line of the table,
assuming the first line was the positions 1 through n in order. We will
use brackets when we do this to indicate that we are talking about
permutations and not orders of the deck. So in the above examples we
can write π1 = [23451] and π2 = [15263748].

It is important to remember the distinction between orderings of
the deck and permutations. An ordering is the specific order in which
the cards lie in the deck. A permutation, on the other hand, does not
say anything about the specific order of a deck. It only specifies some
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rearrangement, i.e. how one ordering changes to another, regardless of
what the first ordering is. For example, the permutation π1 = [23451]
changes the ordering 12345 to 23451, as well as rearranging 41325 to
13254, and 25431 to 54312. (What will be true, however, is that the
numbers we write down for a permutation will always be the same as
the numbers for the ordering that results when the rearrangement cor-
responding to this permutation is done to the naturally ordered deck.)
Mathematicians say this convention gives an action of the group of per-
mutations Sn on the set of orderings of the deck. (In fact, the action
is a simply transitive one, which just means there is always a unique
permutation that rearranges the deck from any given order to any other
given order.)

Now we want to consider what happens when we perform a rear-
rangement corresponding to some permutation π, and then follow it by
a rearrangement corresponding to some other permutation τ . This will
be important later when we wish to condense several rearrangements
into one, as in shuffling a deck of cards repeatedly. The card in position
i after both rearrangements are done was in position τ(i) when the first
but not the second rearrangement was done. But the card in position
j after the first but not the second rearrangement was in position π(j)
before any rearrangements. So set j = τ(i) and get that the card in
position i after both rearrangements was in position π(τ(i)) before any
rearrangements. For this reason we define the composition π ◦ τ of π
and τ to be the map which takes i to π(τ(i)), and we see that doing
the rearrangement corresponding to π and then the one corresponding
to τ is equivalent to a single rearrangement given by π ◦ τ . (Note that
we have π ◦ τ and not τ ◦π when π is done first and τ second. In short,
the order matters greatly when composing permutations, and mathe-
maticians say that Sn is noncommutative.) For example, we see the
complete reversal of a 5 card deck is given by π3 = [54321], and we can
compute the composition π1 ◦ π3.

i 1 2 3 4 5
π3(i) 5 4 3 2 1

π1 ◦ π3(i) 1 5 4 3 2

2.2 Shuffles

Now we must define what a shuffle, or method of shuffling, is. It’s
just a probability density on Sn, considering each permutation as a way
of rearranging the deck. This means that each permutation is given
a certain fixed probability of occuring, and that all such probabilities
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add up to one. A well-known example is the top-in shuffle. This is
accomplished by taking the top card off the deck and reinserting it in
any of the n positions between the n− 1 cards in the remainder of the
deck, doing so randomly according to a uniform choice. This means
the density on Sn is given by 1/n for each of the cyclic permutations
[234 · · · (k − 1)k1(k + 1)(k + 2) · · · (n − 1)n] for 1 ≤ k ≤ n, and 0 for
all other permutations. This is given for a deck of size n = 3 in the
following example:

permutation [123] [213] [231] [132] [321] [312]
probability

under top-in 1/3 1/3 1/3 0 0 0

What this definition of shuffle leads to, when the deck is repeatedly
shuffled, is a random walk on the group of permutations Sn. Suppose
you are given a method of shuffling Q, meaning each permutation π is
given a certain probability Q(π) of occuring. Start at the identity of
Sn, i.e. the trivial rearrangement of the deck which does not change its
order at all. Now take a step in the random walk, which means choose
a permutation π1 randomly, according to the probabilities specified by
the density Q. (So π1 is really a random variable.) Rearrange the deck
as directed by π1, so that the card now in position i was in position
π1(i) before the rearrangement. The probability of each of these various
rearrangings of the deck is obviously just the density of π1, given by Q.
Now repeat the procedure for a second step in the random walk, choos-
ing another permutation π2, again randomly according to the density Q
(i.e. π2 is a second, independent random variable with the same density
as π1). Rearrange the deck according to π2. We saw in the last section
on permutations that the effective rearrangement of the deck including
both permutations is given by π1 ◦ π2.

What is the probabiltiy of any particular permutation now, i.e what
is the density for π1◦π2? Call this density Q(2). To compute it, note the
probability of π1 being chosen, and then π2, is given by Q(π1) ·Q(π2),
since the choices are independent of each other. So for any particular
permutation π, Q(2)(π) is given by the sum of Q(π1) · Q(π2) for all
pairs π1, π2 such that π = π1 ◦ π2, since in general there may be many
different ways of choosing π1 and then π2 to get the same π = π1 ◦ π2.
(For instance, completely reversing the deck and then switching the first
two cards gives the same overall rearrangement as first switching the
last two cards and then reversing the deck.) This way of combining Q
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with itself is called a convolution and written Q ∗Q:

Q(2)(π) = Q ∗Q(π) =
∑

π1◦π2=π

Q(π1)Q(π2) =
∑
π1

Q(π1)Q(π−1
1 ◦ π).

Here π−1
1 denotes the inverse of π1, which is the permutation that “un-

does” π1, in the sense that π1 ◦ π−1
1 and π−1

1 ◦ π1 are both equal to the
identity permutation which leaves the deck unchanged. For instance,
the inverse of [253641] is [613524].

So we now have a shorthand way of expressing the overall probability
density on Sn after two steps of the random walk, each step determined
by the same densityQ. More generally, we may let each step be specified
by a different density, say Q1 and then Q2. Then the resulting density
is given by the convolution

Q1 ∗Q2(π) =
∑

π1◦π2=π

Q1(π1)Q2(π2) =
∑
π1

Q1(π1)Q2(π−1
1 ◦ π).

Further, we may run the random walk for an arbitrary number, say k, of
steps, the density on Sn being given at each step i by some Qi. Then the
resulting density on Sn after these k steps will be given by Q1 ∗Q2 ∗· · ·∗
Qk. Equivalently, doing the shuffle specified by Q1, and then the shuffle
specified by Q2, and so on, up through the shuffle given by Qk, is the
same as doing the single shuffle specified by Q1 ∗Q2 ∗ · · · ∗Qk. In short,
repeated shuffling corresponds to convoluting densities. This method
of convolutions is complicated, however, and we will see later that for
a realistic type of shuffle, there is a much easier way to compute the
probability of any particular permutation after any particular number
of shuffles.

3 THE RIFFLE SHUFFLE

We would now like to choose a realistic model of how actual cards are
physically shuffled by people. A particular one with nice mathematical
properties is given by the “riffle shuffle.” (Sometimes called the GSR
shuffle, it was developed by Gilbert and Shannon, and independently by
Reeds.) It goes as follows. First cut the deck into two packets, the first
containing k cards, and the other the remaining n − k cards. Choose
k, the number of cards cut, according to the binomial density, meaning
the probability of the cut occuring exactly after k cards is given by(
n
k

)
/2n.
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Once the deck has been cut into two packets, interleave the cards
from each packet in any possible way, such that the cards of each packet
maintain their own relative order. This means that the cards originally
in positions 1, 2, 3, . . . k must still be in the same order in the deck after
it is shuffled, even if there are other cards in-between; the same goes
for the cards originally in positions k+ 1, k+ 2, . . .n. This requirement
is quite natural when you think of how a person shuffles two packets
of cards, one in each hand. The cards in the left hand must still be in
the same relative order in the shuffled deck, no matter how they are
interleaved with the cards from the other packet, because the cards in
the left hand are dropped in order when shuffling; the same goes for the
cards in the right hand.

Choose among all such interleavings uniformly, meaning each is e-

qually likely. Since there are
(
n
k

)
possible interleavings (as we only

need choose k spots among n places for the first packet, the spots for
the cards of the other packet then being determined), this means any

particular interleaving has probability 1/
(
n
k

)
of occuring. Hence the

probability of any particular cut followed by a particular interleaving,

with k the size of the cut, is
(
n
k

)
/2n ·1/

(
n
k

)
= 1/2n. Note that this

probability 1/2n contains no information about the cut or the interleav-
ing! In other words, the density of cuts and interleavings is uniform —
every pair of a cut and a possible resulting interleaving has the same
probability.

This uniform density on the set of cuts and interleavings now induces
in a natural way a density on the set of permutations, i.e. a shuffle,
according to our definition. We will call this the riffle shuffle and denote
it by R. It is defined for π in Sn by R(π) = the sum of the probabilities
of each cut and interleaving that gives the rearrangement of the deck
corresponding to π, which is 1/2n times the number of ways of cutting
and interleaving that give the rearrangement of the deck corresponding
to π. In short, the chance of any arrangement of cards occuring under
riffle shuffling is simply the proportion of ways of riffling which give
that arrangement.

Here is a particular example of the riffle shuffle in the case n = 3,
with the deck starting in natural order 123.
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k = cut position cut deck probability of this cut possible interleavings
0 |123 1/8 123
1 1|23 3/8 123,213,231
2 12|3 3/8 123,132,312
3 123| 1/8 123

Note that 0 or all 3 cards may be cut, in which case one packet
is empty and the other is the whole deck. Now let us compute the
probability of each particular ordering occurring in the above example.
First, look for 213. It occurs only in the cut k=1, which has probability
3/8. There it is one of three possibilities, and hence has the conditional
probability 1/3, given k = 1. So the overall probability for 213 is
1
3
· 3

8
= 1

8
, where of course 1

8
= 1

23 is the probability of any particular
cut and interleaving pair. Similar analyses hold for 312, 132, and 231,
since they all occur only through a single cut and interleaving. For 123,
it is different; there are four cuts and interleavings which give rise to
it. It occurs for k = 0, 1,2, and 3, these situations having probabilities
1/8, 3/8, 3/8, and 1/8, respectively. In these cases, the conditional
probability of 123, given the cut, is 1, 1/3, 1/3, and 1. So the overall
probability of the ordering is 1

8
· 1 + 3

8
· 1

3
+ 3

8
· 1

3
+ 1

8
· 1 = 1

2
, which

also equals 4 · 1
23 , the number of ways of cutting and interleaving that

give rise to the ordering times the probability of any particular cut and
interleaving. We may write down the entire density, now dropping the
assumption that the deck started in the natural order, which means we
must use permutations instead of orderings.

permutation π [123] [213] [231] [132] [312] [321]
probability R(π)

under riffle 1/2 1/8 1/8 1/8 1/8 0

It is worth making obvious a point which should be apparent. The
information specified by a cut and an interleaving is richer than the in-
formation specified by the resulting permutation. In other words, there
may be several different ways of cutting and interleaving that give rise to
the same permutation, but different permutations necessarily arise from
distinct cut/interleaving pairs. (An exercise for the reader is to show
that for the riffle shuffle, this distinction is nontrivial only when the
permutation is the identity, i.e. the only time distinct cut/interleaving
pairs give rise to the same permutation is when the permutation is the
identity.)
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There is a second, equivalent way of describing the riffle shuffle.
Start the same way, by cutting the deck according to the binomial
density into two packets of size k and n− k. Now we are going to drop
a card from the bottom of one of the two packets onto a table, face
down. Choose between the packets with probability proportional to
packet size, meaning if the two packets are of size p1 and p2, then the
probability of the card dropping from the first is p1

p1+p2
, and p2

p1+p2
from

the second. So this first time, the probabilities would be k
n

and n−k
n

.
Now repeat the process, with the numbers p1 and p2 being updated
to reflect the actual packet sizes by subtracting one from the size of
whichever packet had the card dropped last time. For instance, if the
first card was dropped from the first packet, then the probabilities for
the next drop would be k−1

n−1
and n−k

n−1
. Keep going until all cards are

dropped. This method is equivalent to the first description of the riffle

in that this process also assigns uniform probability 1/
(
n
k

)
to each

possible resulting interleaving of the cards.
To see this, let us figure out the probability for some particular way

of dropping the cards, say, for the sake of definiteness, from the first
packet and then from the first, second, second, second, first, and so on.
The probability of the drops occuring this way is

k

n
· k − 1
n− 1

· n− k
n− 2

· n− k − 1
n− 3

· n− k − 2
n− 4

· k − 2
n− 5

· · · ,

where we have multiplied probabilities since each drop decision is inde-
pendent of the others once the packet sizes have been readjusted. Now
the product of the denominators of these fractions is n!, since it is just
the product of the total number of cards left in both packets before
each drop, and this number decreases by one each time. What is the
product of the numerators? Well, we get one factor every time a card
is dropped from one of the packets, this factor being the size of the
packet at that time. But then we get all the numbers k, k−1, . . . , 1 and
n− k, n− k− 1, . . . , 1 as factors in some order, since each packet passes
through all of the sizes in its respective list as the cards are dropped
from the two packets. So the numerator is k!(n− k)!, which makes the

overall probability k!(n−k)!/n! = 1/
(
n
k

)
, which is obviously valid for

any particular sequence of drops, and not just the above example. So
we have now shown the two descriptions of the riffle shuffle are equiva-
lent, as they have the same uniform probability of interleaving after a
binomial cut.
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Now let R(k) stand for convoluting R with itself k times. This cor-
responds to the density after k riffle shuffles. For which k does R(k)

produce a randomized deck? The next section begins to answer this
question.

4 HOW FAR AWAY FROM RANDOM-
NESS?

Before we consider the question of how many times we need to shuffle,
we must decide what we want to achieve by shuffling. The answer
should be randomness of some sort. What does randomness mean?
Simply put, any arrangement of cards is equaly likely; no one ordering
should be favored over another. This means the uniform density U on
Sn, each permutation having probability U(π) = 1/|Sn| = 1/n!.

Now it turns out that for any fixed number of shuffles, no matter
how large, riffle shuffling does not produce complete randomness in this
sense. (We will, in fact, give an explicit formula which shows that after
any number of riffle shuffles, the identity permutation is always more
likely than any other to occur.) So when we ask how many times we
need to shuffle, we are not asking how far to go in order to achieve
randomness, but rather to get close to randomness. So we must define
what we mean by close, or far, i.e. we need a distance between densities.

The concept we will use is called variation distance (which is essen-
tially the L1 metric on the space of densities). Suppose we are given two
probability densities, Q1 and Q2, on Sn. Then the variation distance
between Q1 and Q2 is defined to be

‖Q1 −Q2‖ =
1
2
∑
π∈Sn
|Q1(π)−Q2(π)|.

The 1
2

normalizes the result to always be between 0 and 1.
Here is an example. Let Q1 = R be the density calculated above

for the three card riffle shuffle. Let Q2 be the complete reversal — the
density that gives probability 1 for [321], i.e. certainty, and 0 for all
other permutations, i.e. nonoccurence.
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π Q1(π) Q2(π) |Q1(π)−Q2(π)|
[123] 1/2 0 1/2
[213] 1/8 0 1/8
[312] 1/8 0 1/8
[132] 1/8 0 1/8
[231] 1/8 0 1/8
[321] 0 1 1

Total 2

So here ‖Q1 − Q2‖ = 2/2 = 1, and the densities are as far apart as
possible.

Now the question we really want to ask is: how big must we take k
to make the variation distance ||R(k)−U || between the riffle and uniform
small? This can be best answered by a graph of ||R(k) − U || versus k.
The following theory is directed towards constructing this graph.

5 RISING SEQUENCES

To begin to determine what the density R(k) is, we need to consider
a fundamental concept, that of a rising sequence. A rising sequence
of a permutation is a maximal consecutively increasing subsequence.
What does this really mean for cards? Well, perform the rearrangement
corresponding to the permutation on a naturally ordered deck. Pick any
card, labeled x say, and look after it in the deck for the card labeled
x+ 1. If you find it, repeat the procedure, now looking after the x+ 1
card for the x + 2 card. Keep going in this manner until you have
to stop because you can’t find the next card after a given card. Now
go back to your original card x and reverse the procedure, looking
before the original card for the x − 1 card, and so on. When you are
done, you have a rising sequence. It turns out that a deck breaks down
as a disjoint union of its rising sequences, since the union of any two
consecutively increasing subsequences containing a given element is also
a consecutively increasing subsequence that contains that element.

Let’s look at an example. Suppose we know that the order of an
eight card deck after shuffling the natural order is 45162378. Start with
any card, say 3. We look for the next card in value after it, 4, and do
not find it. So we stop looking after and look before the 3. We find
2, and then we look for 1 before 2 and find it. So one of the rising
sequences is given by 123. Now start again with 6. We find 7 and then



   

11

8 after it, and 5 and then 4 before it. So another rising sequence is
45678. We have accounted for all the cards, and are therefore done.
Thus this deck has only two rising sequences. This is immediately clear
if we write the order of the deck this way, 45162378, offsetting the two
rising sequences.

It is clear that a trained eye may pick out rising sequences immedi-
ately, and this forms the basis for some card tricks. Suppose a brand
new deck of cards is riffle shuffled three times by a spectator, who then
takes the top card, looks at it without showing it to a magician, and
places it back in the deck at random. The magician then tries to iden-
tify the reinserted card. He is often able to do so because the reinserted
card will often form a singleton rising sequence, consisting of just itself.
Most likely, all the other cards will fall into 23 = 8 rising sequences of
length 6 to 7, since repeated riffle shuffling, at least the first few times,
roughly tends to double the number of the rising sequences and halve
the length of each one each time. Diaconis, himself a magician, and
Bayer [2] describe variants of this trick that magicians have actually
used.

It is interesting to note that the order of the deck in our example,
45162378, is a possible result of a riffle shuffle with a cut after 3 cards.
In fact, any ordering with just two rising sequences is a possible result of
a riffle shuffle. Here the cut must divide the deck into two packets such
that the length of each is the same as the length of the corresponding
rising sequence. So if we started in the natural order 12345678 and
cut the deck into 123 and 45678, we would interleave by taking 4, then
5, then 1, then 6, then 2, then 3, then 7, then 8, thus obtaining the
given order through riffling. The converse of this result is that the riffle
shuffle always gives decks with either one or two rising sequences.

6 BIGGER AND BETTER: a-SHUFFLES

The result that a permutation has nonzero probability under the rif-
fle shuffle if and only if it has exactly one or two rising sequences is
true, but it only holds for a single riffle shuffle. We would like similar
results on what happens after multiple riffle suffles. This can inge-
niously be accomplished by considering a-shuffles, a generalization of
the riffle shuffle. An a-shuffle is another probability density on Sn,
achieved as follows. Let a stand for any positive integer. Cut the deck
into a packets, of nonnegative sizes p1, p2, . . . , pa, with the probability
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of this particular packet structure given by the multinomial density:(
n

p1, p2, . . . , pa

)
/an. Note we must have p1 + · · · + pa = n, but some

of the pi may be zero. Now interleave the cards from each packet in
any way, so long as the cards from each packet maintain their relative
order among themselves. With a fixed packet structure, consider all
interleavings equally likely. Let us count the number of such interleav-
ings. We simply want the number of different ways of choosing, among
n positions in the deck, p1 places for things of one type, p2 places for
things of another type, etc. This is given by the multinomial coefficient(

n
p1, p2, . . . , pa

)
. Hence the probability of a particular rearrangement,

i.e. a cut of the deck and an interleaving, is(
n

p1, p2, . . . , pa

)
/an ·

(
n

p1, p2, . . . , pa

)
=

1
an
.

So it turns out that each combination of a particular cut into a packets
and a particular interleaving is equally likely, just as in the riffle shuffle.
The induced density on the permutations corresponding to the cuts and
interleavings is then called the a-shuffle. We will denote it by Ra. It is
apparent that the riffle is just the 2-shuffle, so R = R2.

An equivalent description of the a-shuffle begins the same way, by
cutting the deck into packets multinomially. But then drop cards from
the bottom of the packets, one at a time, such that the probability
of choosing a particular packet to drop from is proportional to the
relative size of that packet compared to the number of cards left in
all the packets. The proof that this description is indeed equivalent is
exactly analogous to the a = 2 case. A third equivalent description
is given by cutting multinomially into p1, p2, . . . , pa and riffling p1 and
p2 together (meaning choose uniformly among all interleavings which
maintain the relative order of each packet), then riffling the resulting
pile with p3, then riffling that resulting pile with p4, and so on.

There is a useful code that we can construct to specify how a par-
ticular a-shuffle is done. (Note that we are abusing terminology slightly
and using shuffle here to indicate a particular way of rearranging the
deck, and not the density on all such rearrangements.) This is done
through n digit base a numbers. Let A be any one of these n digit
numbers. Count the number of 0’s in A. This will be the size of the
first packet in the a-shuffle, p1. Then p2 is the number of 1’s in A, and
so on, up through pa = the number of (a − 1)’s. This cuts the deck
cut into a packets. Now take the beginning packet of cards, of size p1.
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Envision placing these cards on top of all the 0 digits of A, maintain-
ing their relative order as a rising sequence. Do the same for the next
packet, p2, except placing them on the 1’s. Again, continue up through
the (a− 1)’s. This particular way of rearranging the cards will then be
the particular cut and interleaving corresponding to A.

Here is an example, with the deck starting in natural order. Let
A = 23004103 be the code for a particular 5-shuffle of the 8 card deck.
There are three 0’s, one 1, one 2, two 3’s, and one 4. Thus p1 = 3, p2 =
1, p3 = 1, p4 = 2, and p5 = 1. So the deck is cut into 123 | 4 | 5 | 67 | 8.
So we place 123 where the 0’s are in A, 4 where the 1 is, 5 where the 2
is, 67 where the 3’s are, and 8 where the 4 is. We then get a shuffled
deck of 56128437 when A is applied to the natural order.

Reflection shows that this code gives a bijective correspondence be-
tween n digit base a numbers and the set of all ways of cutting and
interleaving an n card deck according to the a-shuffle. In fact, if we put
the uniform density on the set of n digit base a numbers, this transfers
to the correct uniform probability for cutting and interleaving in an
a-shuffle, which means the correct density is induced on Sn, i.e. we get
the right probabilities for an a-shuffle. This code will prove useful later
on.

7 VIRTUES OF THE a-SHUFFLE

7.1 Relation to rising sequences

There is a great advantage to considering a-shuffles. It turns out that
when you perform a single a-shuffle, the probability of achieving a par-
ticular permutation π does not depend upon all the information con-
tained in π, but only on the number of rising sequence that π has.
In other words, we immediately know that the permutations [12534],
[34512], [51234], and [23451] all have the same probability under any
a-shuffle, since they all have exactly two rising sequences. Here is the
exact result:

The probablity of achieving a permutation π when doing an

a-shuffle is given by
(
n+ a− r

n

)
/an, where r is the number of

rising sequences in π.

Proof: First note that if we establish and fix where the a − 1 cut-
s occur in an a-shuffle, then whatever permutations can actually be
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achieved by interleaving the cards from this cut/packet structure are
achieved in exactly one way; namely, just drop the cards in exactly the
order of the permutation. Thus the probability of achieving a particular
permutation is the number of possible ways of making cuts that could
actually give rise to that permutation, divided by the total number of
ways of making cuts and interleaving for an a-shuffle.

So let us count the ways of making cuts in the naturally ordered deck
that could give the ordering that results when π is applied. If we have
r rising sequences in π, we know exactly where r−1 of the cuts have to
have been; they must have occurred between pairs of consecutive cards
in the naturally ordered deck such that the first card ends one rising
sequence of π and the second begins another rising sequence of π. This
means we have a− 1− (r− 1) = a− r unspecified, or free, cuts. These
are free in the sense that they can in fact go anywhere. So we must
count the number of ways of putting a − r cuts among n cards. This
can easily be done by considering a sequence of (a− r) + n blank spots
which must be filled by (a − r) things of one type (cuts) and n things

of another type (cards). There are
(

(a− r) + n
n

)
ways to do this, i.e.

choosing n places among (a− r) + n.
This is the numerator for our probability expressed as a fraction;

the denominator is the number of possible ways to cut and interleave
for an a-shuffle. By considering the encoding of shuffles we see there
are an ways to do this, as there are this many n digit base a numbers.
Hence our result is true.

This allows us to envision the probability density associated with an
a-shufle in a nice way. Order all the permutation in Sn in any way such
that the number of rising sequences is non-decreasing. If we label these
permutations as points on a horizontal axis, we may take the vertical
axis to be the numbers between 0 and 1, and at each permutation place
a point whose vertical coordinate is the probability of the permutation.
Obviously, the above result means we will have sets of points of the
same height. Here is an example for a 7-shuffle of the five card deck
(solid line), along with the uniform density U ≡ 1/5! = 1/120 (dashed
line).

Notice the probability
(
n+ a− r

n

)
/an is a monotone decreasing

function of r. This means if 1 ≤ r1 < r2 ≤ n, then a particular permuta-
tions with r1 rising sequences is always more likely than a permutation
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with r2 rising sequences under any a-shuffle. Hence the graph of the
density for an a-shuffle, if the permutations are ordered as above, will
always be nonincreasing. In particular, the probability starts above
uniform for the identity, the only permutation with r = 1. (In our

example R7(identity) =
(

5 + 7− 1
5

)
/75 = .0275.) It then decreas-

es for increasing r, at some point crossing below uniform (from r = 2
to 3 in the example). The greatest r value such that the probability
is above uniform is called the crossover point. Eventually at r = n,
which occurs only for the permutation corresponding to complete re-
versal of the deck, the probability is at its lowest value. (In the example(

5 + 7− 5
5

)
/75 = .0012.) All this explains the earlier statement that

after an a-shuffle, the identity is always more likely than it would be
under a truly random density, and is always more likely than any other
particular permutation after the same a-shuffle.

For a fixed deck size n, it is interesting to note the behavior of the
crossover point as a increases. By analyzing the inequality(

n+ a− r
n

)
/an ≥ 1

n!
,

the reader may prove that the crossover point never moves to the left,
i.e. it is a nondecreasing function of a, and that it eventually moves to
the right, up to n/2 for n even and (n−1)/2 for n odd, but never beyond.
Furthermore, it will reach this halfway point for a approximately the
size of n2/12. Combining with the results of the next section, this means
roughly 2 log2 n riffle shuffles are needed to bring the crossover point to
halfway.

7.2 The multiplication theorem

Why bother with an a-shuffle? In spite of the nice formula for a
density dependent only on the number of rising sequences, a-shuffles
seem of little practical use to any creature that is not a-handed. This
turns out to be false. After we establish another major result that
addresses this question, we will be in business to construct our variation
distance graph.

This result concerns multiple shuffles. Suppose you do a riffle shuffle
twice. Is there any simple way to describe what happens, all in one
step, other than the convolution of densities described in section 2.2?
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Or more generally, if you do an a-shuffle and then do a b-shuffle, how
can you describe the result? The answer is the following:

An a-shuffle followed by a b-shuffle is equivalent to a single
ab-shuffle, in the sense that both processes give exactly the
same resulting probability density on the set of permutations.

Proof: Let us use the previously described code for shuffles. Sup-
pose that A is an n digit base a number, and B is an n digit base b
number. Then first doing the cut and interleaving encoded by A and
then doing the cut and interleaving encoded by B gives the same per-
mutation as the one resulting from the cut and interleaving encoded
by the n digit base ab number given by AB&B, as John Finn figured
out. (The proof for this formula will be deferred until section 9.4, where
the inverse shuffle is discussed.) This formula needs some explanation.
AB is defined to be the code that has the same base a digits as A, but
rearranged according to the permutation specified by B. The symbol &
in AB&B stands for digit-wise concatenation of two numbers, meaning
treat the base a digit AB

i in the ith place of AB together with the base b
digit Bi in the ith place of B as the base ab digit given by AB

i ·b+Bi. In
other words, treat the combination AB

i &Bi as a two digit number, the
right-most place having value 1, and the left-most place having value b,
and then treat the result as a one digit base ab number.

Why this formula holds is better shown by an example than by
general formulas. Suppose A = 012210 is the code for a particular 3-
shuffle, and B = 310100 is the code for a particular 4-shuffle. (Again
we are abusing terminology slightly.) Let πA and πB be the respective
permutations. Then in the tables below note that πA ◦πB, the result of
a particular 3-shuffle followed by a particular 4-shuffle, and πAB&B, the
result of a particular 12-shuffle, are the same permutation.

i 1 2 3 4 5 6
πA(i) 1 3 5 6 4 2
πB(i) 6 4 1 5 2 3

πA ◦ πB(i) 2 6 1 4 3 5

A 0 1 2 2 1 0
B 3 1 0 1 0 0
AB 0 2 0 1 1 2
B 3 1 0 1 0 0

AB&B 3 9 0 5 4 8

i 1 2 3 4 5 6
πAB&B(i) 2 6 1 4 3 5
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We now have a formula AB&B that is really a one-to-one correspon-
dence between the set of pairs, consisting of one n digit base a number
and one n digit base b number, and the set of n digit base ab numbers;
further this formula has the property that the cut and interleaving spec-
ified by A, followed by the cut and interleaving specified by B, result
in the same permutation of the deck as that resulting from the cut and
interleaving specified by AB&B. Since the probability densities for a,
b, and ab-shuffles are induced by the uniform densities on the sets of n
digit base a, b, or ab codes, respectively, the properties of the one-to-
one correspondence imply the induced densities on Sn of an a-shuffle
followed by a b-shuffle and an ab-shuffle are the same. Hence our result
is true.

7.3 Expected happenings after an a-shuffle

It is of theoretical interest to measure the expected value of various
quantities after an a-shuffle of the deck. For instance, we may ask what
is the expected number of rising sequences after an a-shuffle? I’ve found
an approach to this question which has too much computation to be
presented here, but gives the answer as

a− n+ 1
an

a−1∑
r=0

rn.

As a→∞, this expression tends to n+1
2

, which is the expected number
of rising sequences for a random permutation. When n → ∞, the
expression goes to a. This makes sense, since when the number of
packets is much less than the size of the deck, the expected number of
rising sequences is the same as the number of packets.

The expected number of fixed points of a permutation after an a-
shuffle is given by

∑n−1
i=0 a

−i, as mentioned in [2]. As n → ∞, this
expression tends to 1

1−1/a
= a

a−1
, which is between 1 and 2. As a→∞,

the expected number of fixed points goes to 1, which is the expected
number of fixed points for a random permutation.

8 PUTTING IT ALL TOGETHER

Let us now combine our two major results of the last section to get
a formula for R(k), the probability density for the riffle shuffle done k
times. This is just k 2-shuffles, one after another. So by the multipli-
cation theorem, this is equivalent to a single 2 · 2 · 2 · · · 2 = 2k-shuffle.
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Hence in the R(k) density, there is a
(

2k + n− r
n

)
/2nk chance of a

permutation with r rising sequences occurring, by our rising sequence
formula. This now allows us to work on the variation distance ‖Rk−U‖.
For a permutation π with r rising sequences, we see that

|Rk(π)− U(π)| =
∣∣∣∣∣
(

2k + n− r
n

)
/2nk − 1

n!

∣∣∣∣∣ .
We must now add up all the terms like this, one for each permutation.
We can group terms in our sum according to the number of rising
sequences. If we let An,r stand for the number of permutations of n cards
that have r rising sequences, each of which have the same probabilities,
then the variation distance is given by

‖Rk − U‖ =
1
2

n∑
r=1

An,r

∣∣∣∣∣
(

2k + n− r
n

)
/2nk − 1

n!

∣∣∣∣∣ .
The only thing unexplained is how to calculate the An,r. These are
called the Eulerian numbers, and various formulas are given for them

(e.g. see [8]). One recursive one isAn,1 = 1 andAn,r = rn−∑r−1
j=1

(
n+ r − j

n

)
An,j.

(It is interesting to note that the Eulerian numbers are symmetric in
the sense that An,r = An,n−r+1. So there are just as many permutations
with r rising sequences as there are with n − r + 1 rising sequences,
which the reader is invited to prove directly.)

Now the expression for variation distance may seem formidable, and
it is. But it is easy and quick for a computer program to calculate and
graph ‖Rk − U‖ versus k for any specific, moderately sized n. Even
on the computer, however, this computation is tractable because we
only have n terms, corresponding to each possible number of rising
sequences. If we did not have the result on the invariance of the proba-
bility when the number of rising sequences is constant, we would have
|Sn| = n! terms in the sum. For n = 52, this is approximately 1068,
which is much larger than any computer could handle. Here is the
graphical result of a short Mathematica program that does the calcu-
lations for n = 52. The horizontal axis is the number of riffle shuffles,
and the vertical axis is the variation distance to uniform.

The answer is finally at hand. It is clear that the graph makes
a sharp cutoff at k = 5, and gets reasonably close to 0 by k = 11.
A good middle point for the cutoff seems to k = 7, and this is why
seven shuffles are said to be enough for the usual deck of 52 cards.
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Additionally, asymptotic analysis in [2] shows that when n, the number
of cards, is large, approximately k = 3

2
log n shuffles suffice to get the

variation distance through the cutoff and close to 0.
We have now achieved our goal of constructing the variation dis-

tance graph, which explains why seven shuffles are “enough”. In the
remaining sections we present some other aspects to shuffling, as well
as some other ways of approaching the question of how many shuffles
should be done to deck.

9 THE INVERSE SHUFFLE

There is an unshuffling procedure which is in some sense the reverse
of the riffle shuffle. It is actually simpler to describe, and some of the
theorems are more evident in the reverse direction. Take a face-down
deck, and deal cards from the bottom of the deck one at a time, placing
the cards face-down into one of two piles. Make all the choices of which
pile independently and uniformly, i.e. go 50/50 each way each time.
Then simply put one pile on top of the other. This may be called the
riffle unshuffle, and the induced density on Sn may be labeled R̂. An
equivalent process is generated by labeling the backs of all the cards
with 0’s and 1’s independently and uniformly, and then pulling all the
0’s to the front of the deck, maintaining their relative order, and pulling
all the 1’s the back of the deck, maintaining their relative order. This
may quickly be generalized to an a-unshuffle, which is described by
labeling the back of each card independently with a base a digit chosen
uniformly. Now place all the cards labeled 0 at the front of the deck,
maintaining their relative order, then all the 1’s, and so on, up through
the (a− 1)’s. This is the a-unshuffle, denoted by R̂a.

We really have a reverse or inverse operation in the sense that
R̂a(π) = Ra(π−1) holds. This is seen most easily by looking at n digit
base a numbers. We have already seen in section 6 that each such n
digit base a number may be treated as a code for a particular cut and
interleaving in an a-shuffle; the above paragraph in effect gives a way
of also treating each n digit base a numbers as code for a particular
way of achieving an a-unshuffle. The two induced permutations we get
when looking at a given n digit base a number in these two ways are
inverse to one another, and this proves R̂a(π) = Ra(π−1) since the u-
niform density on n digit base a numbers induces the right density on
Sn.
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We give a particular example which makes the general case clear.
Take the 9 digit base 3 code 122020110 and apply it in the forward
direction, i.e. treat it as directions for a particular 3-shuffle of the deck
123456789 in natural order. We get the cut structure 123|456|789 and
hence the shuffled deck 478192563. Now apply the code to this deck
order, but backwards, i.e. treat it as directions for a 3-unshuffle of
478192563. We get the cards where the 0’s are, 123, pulled forward;
then the 1’s, 456; and then the 2’s, 789, to get back to the naturally
ordered deck 123456789. It is clear from this example that, in general,
the a-unshuffle directions for a given n digit base a number pull back
the cards in a way exactly opposite to the way the a-shuffle directions
from that code distributed them. This may be checked by applying the
code both forwards and backwards to the unshuffled deck 123456789
and getting (

123456789
478192563

) (
123456789
469178235

)
,

which inspection shows are indeed inverse to one another.
The advantage to using unshuffles is that they motivate the AB&B

formula in the proof of the multiplication theorem for an a-shuffle fol-
lowed by a b-shuffle. Suppose you do a 2-unshuffle by labeling the cards
with 0’s and 1’s in the upper right corner according to a uniform and
independent random choice each time, and then sorting the 0’s before
the 1’s. Then do a second 2-unshuffle by labeling the cards again with
0’s and 1’s, placed just to the left of the digit already on each card, and
sorting these left-most 0’s before the left-most 1’s. Reflection shows
that doing these two processes is equivalent to doing a single process:
label each card with a 00, 01, 10, or 11 according to uniform and inde-
pendent choices, sort all cards labeled 00 and 10 before all those labeled
01 and 11, and then sort all cards labeled 00 and 01 before all those
labeled 10 and 11. In other words, sort according to the right-most
digit, and then according to the left-most digit. But this is the same as
sorting the 00’s before the 01’s, the 01’s before the 10’s, and the 10’s
before the 11’s all at once. So this single process is equivalent to the
following: label each card with a 0, 1, 2, or 3 according to uniform and
independent choices, and sort the 0’s before the 1’s before the 2’s before
the 3’s. But this is exactly a 4-unshuffle!

So two 2-unshuffles are equivalent to a 2 · 2 = 4-unshuffle, and gen-
eralizing in the obvious way, a b-unshuffle followed by an a-unshuffle
is equivalent to an ab-unshuffle. (In the case of unshuffles we have or-
ders reversed and write a b-unshuffle followed by an a-unshuffle, rather
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than vice-versa, for the same reason that one puts on socks and then
shoes, but takes off shoes and then socks.) Since the density for un-
shuffles is the inverse of the density for shuffles (in the sense that
R̂a(π) = Ra(π−1)), this means an a-shuffle followed by a b-shuffle is e-
quivalent to an ab-shuffle. Furthermore, we are tempted to believe that
combining the codes for unshuffles should be given by A&B, where A
and B are the sequences of 0’s and 1’s put on the cards, encapsulat-
ed as n digit base 2 numbers, and & is the already described symbol
for digitary concatenation. This A&B is not quite right, however; for
when two 2-unshuffles are done, the second group of 0’s and 1’s will
not be put on the cards in their original order, but will be put on the
cards in the order they are in after the first unshuffle. Thus we must
compensate in the formula if we wish to treat the 00’s, 01’s, 10’s, and
11’s as being written down on the cards in their original order at the
beginning, before any unshuffling. We can do this by by having the
second sequence of 0’s and 1’s permuted, according to the inverse of
the permutation described by the first sequence of 0’s and 1’s. So we
must use AB instead of A. Clearly this works for all a and b and not
just a = b = 2. This is why the formula for combined unshuffles, and
hence shuffles, is AB&B and not just A&B. (The fact that it is actually
AB&B and not A&BA or some such variant is best checked by looking
at particular examples, as in section 7.2.)

10 ANOTHER APPROACH TO SUFFI-
CIENT SHUFFLING

10.1 Seven is not enough

A footnote must be added to the choosing of any specific number,
such as seven, as making the variation distance small enough. There
are examples where this does not randomize the deck enough. Peter
Doyle has invented a game of solitaire that shows this quite nicely.
A simplified, albeit less colorful version is given here. Take a deck
of 52 cards, turned face-down, that is labeled in top to bottom order
123 · · · (25)(26)(52)(51) · · · (28)(27). Riffle shuffle seven times. Then
deal the cards one at a time from the top of the deck. If the 1 comes
up, place it face up on the table. Call this pile A. If the 27 comes up,
place it face up on the table in a separate pile, calling this B. If any
other card comes up that it is not the immediate successor of the top
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card in either A or B, then place it face up in the pile C. If the imme-
diate successor of the top card of A comes up, place it face up on top
of A, and the same for B. Go through the whole deck this way. When
done, pick up pile C, turn it face down, and repeat the procedure. Keep
doing so. End the game when either pile A or pile B is full, i.e. has
twenty-six cards in it. Let us say the game has been won if A is filled
up first, and lost if B is.

It turns out that the game will end much more than half the time
with pile A being full, i.e the deck is not randomized ‘enough.’ Com-
puter simulations indicate that we win about 81% of the time. Heuris-
tically, this is because the rising sequences in the permuted deck after
a 27 = 128-shuffle can be expected to come from both the first and
second halves of the original deck in roughly the same numbers and
length. However, the rising sequences from the first half will be ‘for-
ward’ in order and the ones from the second half will be ‘backward.’
The forward ones require only one pass through the deck to be placed
in pile A, but the backward ones require as many passes through the
deck as their length, since only the last card can be picked off and put
into pile B each time. Thus pile A should be filled more quickly; what
really makes this go is that a 128-shuffle still has some rising sequences
of length 2 or longer, and it is faster to get these longer rising sequences
into A than it is into to get sequences of the same length into B.

In a sense, this game is almost a worst case scenario. This is because
of the following definition of variation distance, which is equivalent to
the one given in section 4. (The reader is invited to prove this.) Given
two densities Q1 and Q2 on Sn,

‖Q1 −Q2‖ = max
S⊂Sn

|Q1(S)−Q2(S)|,

where the maximum on the r.h.s. is taken over all subsets S of Sn,
and the Qi(S) are defined to be

∑
π∈S Qi(π). What this really means

is that the variation distance is an upper bound (in fact a least upper
bound) for the difference of the probabilities of an event given by the
two densities. This can be directly applied to our game. Let S be
the set of all permutations for which pile A is filled up first, i.e. the
event that we win. Then the variation distance ‖R(7) − U‖ is an upper
bound for the difference between the probability of a permutation in
S occuring after 7 riffles, and the probability of such a permutation
occuring truly randomly. Now such winning permutations should occur
truly randomly only half the time (by symmetry), but the simulations
indicate that they occur 81% percent of the time after 7 riffle shuffles.
So the probability difference is |.81− .50| = .31. On the other hand, the
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variation distance ‖R(7)−U‖ as calculated in section 8 is .334, which is
indeed greater than .31, but not by much. So Doyle’s game of solitaire
is nearly as far away from being a fair game as possible.

10.2 Is variation distance the right thing to use?

The variation distance has been chosen to be the measure of how
far apart two densities are. It seems intutively reasonable as a mea-
sure of distance, just taking the differences of the probabilities for each
permutation, and adding them all up. But the game of the last sec-
tion might indicate that it is too forgiving a measure, rating a shuffling
method as nearly randomizing, even though in some ways it clearly is
not. At the other end of the spectrum, however, some examples, as
modified from [1] and [4], suggest that variation distance may be too
harsh a measure of distance. Suppose that you are presented with a
face-down deck, with n even, and told that it has been perfectly ran-
domized, so that as far as you know, any ordering is equally as likely
as any other. So you simply have the uniform density U(π) = 1/n! for
all π ∈ Sn. But now suppose that the top card falls off, and you see
what it is. You realize that to put the card back on the top of the deck
would destroy the complete randomization by restricting the possible
permutations, namely to those that have this paricular card at the first
position. So you decide to place the card back at random in the deck.
Doing this would have restored complete randomization and hence the
uniform density. Suppose, however, that you realize this, but also figure
superstitiously that you shouldn’t move this original top card too far
from the top. So instead of placing it back in the deck at random, you
place it back at random subject to being in the top half of the deck.

How much does this fudging of randomization cost you in terms of
variation distance? Well, the number of restricted possible orderings
of the deck, each equally likely, is exactly half the possible total, since
we want those orderings where a given card is in the first half, and
not those where it is in the second half. So this density is given by Ū ,
which is 2/n! for half of the permutations and 0 for the other half. So
the variation distance is

‖U − Ū‖ =
1
2

(
n!
2

∣∣∣∣ 2n!
− 1
n!

∣∣∣∣− n!
2

∣∣∣∣0− 1
n!

∣∣∣∣
)

=
1
2
.

This seems a high value, given the range between 0 and 1. Should a
good notion of distance place this density Ū , which most everyone would
agree is very nearly random, half as far away from complete randomness
as possible?
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10.3 The birthday bound

Because of some of the counterintuitive aspects of the variation
distance presented in the last two subsections, we present another idea
of how to measure how far away repeated riffle shuffling is from ran-
domness. It turns out that this idea will give an upper bound on the
variation distance, and it is tied up with the well-known birthday prob-
lem as well.

We begin by first looking at a simpler case, that of the top-in shuffle,
where the top card is taken off and reinserted randomly anywhere into
the deck, choosing among each of the n possible places between cards
uniformly. Before any top-in shuffling is done, place a tag on the bottom
card of the deck, so that it can be identified. Now start top-in shuffling
repeatedly. What happens to the tagged card? Well, the first time a
card, say a, is inserted below the tagged card, and hence on the bottom
of the deck, the tagged card will move up to the penultimate position
in the deck. The next time a card, say b, is inserted below the tagged
card, the tagged card will move up to the antepenultimate position.
Note that all possible orderings of a and b below the tagged card are
equally likely, since it was equally likely that b went above or below a,
given only that it went below the tagged card. The next time a card,
say c, is put below the tagged card, its equal likeliness of being put
anywhere among the order of a and b already there, which comes from
a uniform choice among all orderings of a and b, means that all orders
of a, b, and c are equally likely. Clearly as this process continues the
tagged card either stays in its position in the deck, or it moves up one
position; and when this happens, all orderings of the cards below the
tagged card are equally likely. Eventually the tagged card gets moved
up to the top of the deck by having another card inserted underneath it.
Say this happens on the T ′− 1st top-in shuffle. All the cards below the
tagged card, i.e. all the cards but the tagged card, are now randomized,
in the sense that any order of them is equally likely. Now take the
tag off the top card and top-in shuffle for the T ′th time. The deck is
now completely randomized, since the formerly tagged card has been
reinserted uniformly into an ordering that is a uniform choice of all ones
possible for the remaining n− 1 cards.

Now T′ is really a random variable, i.e. there are probabilities that
T′ = 1, 2, . . ., and by convention we write it in boldface. It is a par-
ticular example of a stopping time, when all orderings of the deck are
equally likely. We may consider its expected value E(T′), which clear-
ly serves well as an intuitive idea of how randomizing a shuffle is, for
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E(T′) is just the average number of top-in shuffles needed to guarantee
randomness by this method. The reader may wish to show that E(T′)
is asymptotic to n log n. This is sketched in the following: Create ran-
dom variables Tj for 2 ≤ j ≤ n, which stand for the difference in time
between when the tagged card first moves up to the jth position from
the bottom and when it first moves up to the j − 1st position. (The
tagged card is said to have moved up to position 1 at step 0.) Then
T′ = T2 +T3 + · · ·+Tn + 1. Now the Tj are all independent and have
densities

P [Tj = i] =
j − 1
n

(
n− j + 1

n

)i−1

.

Calculating the expected values of these geometric densities gives E(Tj) =
n/(j−1). Summing over j and adding one showsE(T′) = 1+n

∑n−1
j=1 j

−1,
which, with a little calculus, gives the result.

T′ is good for other things as well. It is a theorem of Aldous and
Diaconis [1] that P [T′ > k] is an upper bound for the variation distance
between the density on Sn after k top-in shuffles and the uniform density
corresponding to true randomness. This is because T′ is what’s known
as a strong uniform time.

Now we would like to make a similar construction of a stopping
time for the riffle shuffle. It turns out that this is actually easier to
do for the 2-unshuffle; but the property of being a stopping time will
hold for both processes since they are exactly inverse in the sense that
R̂a(π) = Ra(π−1). To begin, recall from section 9 that an equivalent
way of doing a 2-unshuffle is to place a sequence of n 0’s and 1’s on the
deck, one on each card. Subsequent 2-unshuffles are done by placing
additional sequences of 0’s and 1’s on the deck, one on each card, each
time placing a new 0 or 1 to left of the 0’s and 1’s already on the card.
Here is an example of the directions for 5 particular 2-unshuffles, as
written on the cards of a size n = 7 deck before any shuffling is done:

card# unshuffle# base 32
54321

1 01001 9
2 10101 21
3 11111 31
4 00110 6
5 10101 21
6 11000 24
7 00101 5
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The numbers in the last column are obtain by using the digitary
concatenation operator & on the five 0’s and 1’s on each card, i.e. they
are obtained by treating the sequence of five 0’s and 1’s as a base 25 = 32
number. Now we know that doing these 5 particular 2-unshuffles is
equivalent to doing one particular 32-unshuffle by sorting the cards so
that the base 32 labels are in the order 5, 6, 9, 21, 21, 24. Thus we get
the deck ordering 741256.

Now we are ready to define a stopping time for 2-unshuffling. We
will stop after T 2-unshuffles if T is the first time that the base 2T

numbers, one on each card, are all distinct. Why in the world should
this be a guarantee that the deck is randomized? Well, consider all
orderings of the deck resulting from randomly and uniformly labeling
the cards, each with a base 2T number, conditional on all the numbers
being distinct. Any two cards in the deck before shuffling, say i and
j, having received different base 2T numbers, are equally as likely to
have gotten numbers such that i’s is greater than j’s as they are to
have gotten numbers such that j’s is greater than i’s. This means after
2T-unshuffling, i is equally as likely to come after j as to come before
j. Since this holds for any pair of cards i and j, it means the deck is
entirely randomized!

John Finn has contructed a counting argument which directly shows
the same thing for 2-shuffling. Assume 2T is bigger than n, which is
obviously necessary to get distinct numbers. There are 2T!/(2T − n)!
ways to make a list of n distict T digit base 2 numbers, i.e. there are
that many ways to 2-shuffle using distinct numbers, each equally likely.

But every permutation can be achieved by
(

2T

n

)
such ways, since we

need only choose n different numbers from the 2T ones possible (so we
have n nonempty packets of size 1) and arrange them in the necessary
order to achieve the permutation. So the probability of any permutation
under 2-shuffling with distinct numbers is(

2T

n

)
/

[
2T!

(2T − n)!

]
=

1
n!
,

which shows we have the uniform density, and hence that T actually is
a stopping time.

Looking at the particular example above, we see that T > 5, since all
the base 32 numbers are not distinct. The 2 and 5 cards both have the
base 32 number 21 on them. This means that no matter how the rest
of the deck is labeled, the 2 card will always come before the 5, since
all the 21’s in the deck will get pulled somewhere, but maintaining
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their relative order. Suppose, however, that we do a 6th 2-unshuffle
by putting the numbers 0100000 on the naturally ordered deck at the
beginning before any shuffling. Then we have T = 6 since all the base
64 numbers are distinct:

card# unshuffle# base 64
654321

1 001001 9
2 110101 53
3 011111 31
4 000110 6
5 010101 21
6 011000 24
7 000101 5

Again, T is really a random variable, as was T′. Intuitively T really
gives a necessary number of shuffles to get randomness; for if we have
not reached the time when all the base 2T numbers are distinct, then
those cards having the same numbers will necessarily always be in their
original relative order, and hence the deck could not be randomized.
Also analogous to T′ for the top-in shuffle is the fact that P [T > k] is
an upper bound for the variation distance between the density after k
2-unshuffles and true randomness, and hence between k riffle shuffles
and true randomness. So let us calculate P [T > k].

The probability that T > k is the probability that an n digit base 2k

number picked at random does not have distinct digits. Essentially this
is just the birthday problem: given n people who live in a world that has
a year of m days, what is the probability that two or more people have
the same birthday? (Our case corresponds to m = 2k possible base
2k digits/days.) It is easier to look at the complement of this event,
namely that no two people have the same birthday. There are clearly
mn different and equally likely ways to choose birthdays for everybody.
If we wish to choose distinct ones for everyone, the first person’s may
be chosen in m ways (any day), the second’s in m−1 ways (any but the
day chosen for the first person), the third’s in m− 2 ways (any but the
days chosen for the first two people), and so on. Thus the probability
of distinct birthdays being chosen is∏n−1

i=0 (m− i)
mn

=
m!

(m− n)!mn
=
(
m
n

)
n!
mn

,

and hence the probability of two people having the same birthday is
one minus this number. (It is is interesting to note that for m = 365,
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the probability of matching birthdays is about 50% for n = 23 and
about 70% for n = 30. So for a class of more than 23 students, it’s a
better than fair bet that two or more students have the same birthday.)
Transferring to the setting of stopping times for 2-unshuffles, we have

P [T > k] = 1−
(

2k

n

)
n!
2kn

by taking m = 2k. Here is a graph of P [T > k] (solid line), along with
the variation distance ‖Rk −U‖ (points) that it is an upper bound for.

It is interesting to calculate E(T). This is given by

E(T) =
∞∑
k=0

P [T > k] =
∞∑
k=0

[
1−

(
2k

n

)
n!
2kn

]
.

This is approximately 11.7 for n = 52, which means that, according to
this viewpoint, we expect on average 11 or 12 shuffles to be necessary
for randomizing a real deck of cards. Note that this is substantially
larger than 7.

11 STILL ANOTHER VIEWPOINT: MARKOV
CHAINS

An equivalent way of looking at the whole business of shuffling is through
Markov chains. A Markov chain is a stochastic process (meaning that
the steps in the process are governed by some element of randomness)
that consists of bouncing around among some finite set of states S, sub-
ject to certain restrictions. This is described exactly by a sequence of
random variables {Xt}|∞t=0, each taking values in S, where Xt = i corre-
sponds to the process being in state i ∈ S at discrete time t. The density
for X0 is arbitrary, meaning you can start the process off any way you
wish. It is often called the initial density. In order to be a Markov chain,
the subsequent densities are subject to a strong restriction: the prob-
ability of going to any particular state on the next step only depends
on the current state, not on the time or the past history of states occu-
pied. In particular, for each i and j in S there exists a fixed transition
probability pij independent of t, such that P [Xt = j | Xt−1 = i] = pij for
all t ≥ 1. The only requirements on the pij are that they can actually
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be probabilities, i.e. they are nonegative and
∑
j pij = 1 for all i ∈ S.

We may write the pij as a transition matrix p = (pij) indexed by i and
j, and the densities of the Xt as row vectors (P [Xt = j]) indexed by j.

It turns out that once the initial density is known, the densities at
any subsequent time can be exactly calculated (in theory), using the
transition probabilities. This is accomplished inductively by condition-
ing on the previous state. For t ≥ 1,

P [Xt = j] =
∑
i∈S

P [Xt = j | Xt−1 = i] · P [Xt−1 = i].

There is a concise way to write this equation, if we treat (P [Xt = j])
as a row vector. Then we get a matrix form for the above equation:

(P [Xt = j]) = (P [Xt−1 = j]) · p,

where the · on the r.h.s. stands for matrix multiplication of a row vector
times a square matrix. We may of course iterate this equation to get

(P [Xt = j]) = (P [X0 = j]) · pt,

where pt is the tth power of the transition matrix. So the distribution
at time t is essentially determined by the tth power of the transition
matrix.

For a large class of Markov chains, called regular, there is a theorem
that as t→∞, the powers pt will approach a limit matrix, and this limit
matrix has all rows the same. This row (i.e. any one of the rows) gives a
density on S, and it is known as the stationary density. For these regular
Markov chains, the stationary density is a unique limit for the densities
of Xt as t → ∞, regardless of the initial density. Furthermore, the
stationary density is aptly named in the sense that if the initial density
X0 is taken to be the stationary one, then the subsequent densities
for Xt for all t are all the same as the initial stationary density. In
short, the stationary density is an equilibrium density for the process.
We still need to define a regular chain. It is a Markov chain whose
transition matrix raised to some power consists of all strictly positive
probabilities. This is equivalent to the existence of some finite number
t0 for the Markov chain such that one can go from any state to any
other state in exactly t0 steps.

To apply all this to shuffling, let S be Sn, the set of permutations
on n cards, and let Q be the type of shuffle we are doing (so Q is
a density on S). Set X0 to be the identity with probability one. In
other words, we are choosing the intial density to reflect not having
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done anything to the deck yet. The transition probabilities are given
by pπτ = P [Xt = τ | Xt−1 = π] = Q(π−1 ◦ τ), since going from π to
τ is accomplished by composing π with the permutation π−1 ◦ τ to get
τ . (An immediate consequence of this is that the transition matrix for
unshuffling is the transpose of the transition matrix for shuffling, since
p̂πτ = R̂(π−1 ◦ τ) = R((π−1 ◦ τ)−1) = R(τ−1 ◦ π) = pτπ.)

Let us look at the example of the riffle shuffle with n = 3 from
section 3 again, this time as a Markov chain. For Q = R we had

π [123] [213] [231] [132] [312] [321]
Q(π) 1/2 1/8 1/8 1/8 1/8 0

So the transition matrix p, under this ordering of the permutations,
is

[123] [213] [231] [132] [312] [321]

[123]
[213]
[231]
[132]
[312]
[321]



1/2 1/8 1/8 1/8 1/8 0
1/8 1/2 1/8 1/8 0 1/8
1/8 1/8 1/2 0 1/8 1/8
1/8 1/8 0 1/2 1/8 1/8
1/8 0 1/8 1/8 1/2 1/8
0 1/8 1/8 1/8 1/8 1/2


Let us do the computation for a typical element of this matrix, say pπτ
with π = [213] and τ = [132]. Then π−1 = [213] and π−1 ◦ τ = [231]
and R([231]) = 1/8, giving us p[213][132] = 1/8 in the transition matrix.
Although in this case, the n = 3 riffle shuffle, the matrix is symmetric,
this is not in general true; the transition matrix for the riffle shuffle
with deck sizes greater than 3 is always nonsymmetric.

The reader may wish to verify the following transition matrix for
the top-in shuffle:

[123] [213] [231] [132] [312] [321]

[123]
[213]
[231]
[132]
[312]
[321]



1/3 1/3 1/3 0 0 0
1/3 1/3 0 1/3 0 0
0 0 1/3 0 1/3 1/3
0 0 0 1/3 1/3 1/3

1/3 0 0 1/3 1/3 0
0 1/3 1/3 0 0 1/3


The advantage now is that riffle shuffling k times is equivalent to

simply taking the kth power of the riffle transition matrix, which for a
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matrix of size 6-by-6 can be done almost immediately on a computer
for reasonable k. By virtue of the formula

(P [Xt = j]) = (P [X0 = j]) · pt

for Markov chains and that fact that in our example
(P [X0 = j]) =

(
1 0 0 0 0 0

)
, we may read off the density of

the permutations after k shuffles simply as the first row of the kth
power of the transition matrix. For instance, Mathematica gives p7

approximately:

[123] [123] [123] [123] [123] [123]

[123]
[213]
[231]
[132]
[312]
[321]



.170593 .166656 .166656 .166656 .166656 .162781

.166656 .170593 .166656 .166656 .162781 .166656

.166656 .166656 .170593 .162781 .166656 .166656

.166656 .166656 .162781 .170593 .166656 .166656

.166656 .162781 .166656 .166656 .170593 .166656

.162781 .166656 .166656 .166656 .166656 .170593


and therefore the density after 7 shuffles is the first row:

π [123] [213] [231] [132] [312] [321]
Q(π) .170593 .166656 .166656 .166656 .166656 .162781

It is clear that seven shuffles of the three card deck gets us very close
to the uniform density (noting, as always, that the identity is still the
most likely permutation), which turns out to be the stationary density.
We first must note, not surprisingly, that the Markov chains for riffle
shuffling are regular, i.e. there is some number of shuffles after which
any permutation has a positive probability of being achieved. (In fact

we know, from the formula
(

2k + n− r
n

)
/2nk for the probability of a

permutation with r rising sequences being achieved after k riffle shuffles,
that any number of shuffles greater than log2 n will do.) Since the
riffle shuffle Markov chains are regular, we know they have a unique
stationary density, and this is clearly the uniform density on Sn.

From the Markov chain point of view, the rate of convergence of the
Xt to the stationary density, measured by variation distance or some
other metric, is often asymptotically determined by the eigenvalues of
the transition matrix. We will not go into this in detail, but rather will
be content to determine the eigenvalues for the transition matrix p for
riffle shuffling. We know that the entries of pk are the probabilities of
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certain permutations being achieved under k riffle shuffles. These are

of the form
(

2k + n− r
n

)
/2nk. Now we may explicitly write out

(
x+ n− r

n

)
=

n∑
i=0

cn,r,ix
i,

an nth degree polynomial in x, with coefficients a function of n and r.
It doesn’t really matter exactly what the coefficients are, only that we
can write a polynomial in x. Substituting 2k for x, we see the entries
of pk are of the form

[
n∑
i=0

cn,r,i(2k)i]/2nk =
n∑
i=0

cn,r,n−i(
1
2i

)k.

This means the entries of the kth power of p are given by fixed linear
combinations of kth powers of 1, 1/2, 1/4, . . ., and 1/2n. It follows from
some linear algebra the set of all eigenvalues of p is exactly 1, 1/2, 1/4,
. . ., and 1/2n. Their multiplicities are given by the Stirling numbers of
the first kind, up to sign: multiplicity(1/2i) = (−1)(n− i)s1(n, i). This
is a challenge to prove, however. The second highest eigenvalue is the
most important in determining the rate of convergence of the Markov
chain. For riffle shuffling, this eigenvalue is 1/2, and it is interesting to
note in the variation distance graph of section 8 that once the distance
gets to the cutoff, it decreases approximately by a factor of 1/2 each
shuffle.
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