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7. A FRAMEWORK FOR THE EVALUATION OF
SOFTWARE FOR TEACHING STATISTICAL CONCEPTS

Robert C. delMas
The University of Minnesota

INTRODUCTION

As an instructor of introductory statistics, I have developed several computer applications aimed at
facilitating students' development of statistical concepts. The software design has been influenced by my
experience in teaching statistics; the knowledge of learning, problem solving, and cognition that I have
gathered as a cognitive psychologist; and my experience with computers as both a computer user and a
computer programmer. My teaching experience has left me with the impression that many students find it
particularly difficult to gain a rich understanding of some statistical concepts, such as the central limit
theorem. The ideas in cognitive psychology and learning that I gravitate toward hold that students develop
concepts by actively testing ideas (i.e., hypotheses) based on conjectures and implications formulated as
they try to make meaning out of their experiences.

One piece of software that I have developed is called Sampling Distributions. The software is probably
best described as a simulation in that it allows students to change settings and parameters in order to test
implications of the central limit theorem. Sampling Distributions allows a student to manipulate the shape,
and, consequently, the parameters of a parent population (see Figure 1). In the Population window, a
student can select from a set of predefined population shapes or create their own population distribution.
The shape of the population distribution is changed by using up and down arrows that "push" the curve up
or down at various points along the number line. As the distribution's shape changes, Sampling
Distributions  calculates parameters such as the population mean, median, and standard deviation and
displays the numerical values. Once the student is satisfied with the look of the population, he/she can draw
samples.

The Sampling Distributions window (see Figure 2) allows a student to draw samples of any size and to
designate how many samples will be drawn. The program calculates the mean and median for each sample
and presents graphic displays of the distributions of the means and medians, that build up rapidly in real
time, one sample mean at a time. Summary statistics are calculated and presented for the sampling
distributions: the means of the sample means standard deviations and the standard deviation of the sample
means. The sampling distribution statistics can then be compared to the population parameters and to

theoretical values such as  
 σ
 n 

   where σ is the standard deviation and n is the sample size.
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Figure 1: The population window of the Sampling Distributions program

Figure 2: The sampling distributions window
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I have revised Sampling Distributions often. It started as a HyperCard stack, was transformed into a
stand-alone Pascal application for the Macintosh, and since then has gone through about four major
revisions. The changes and revisions have been influenced by several sources of feedback: my personal
beliefs about how students learn as outlined above, comments from colleagues who have used the program
in their classrooms, what appears to work or not to work as I have observed students using Sampling
Distributions , and the written comments of students who have offered evaluations and "wish lists" of
features. These have been the informal sources of evaluation and assessment I have relied on to improve the
program.

Now that the program has developed to a stage that I believe is fairly complete, I find myself wanting to
address more substantive questions of evaluation and assessment. The questions fall into two areas. The first
question is one of value or quality: To what extent does the Sampling Distributions program display the
characteristics of a "good" piece of educational software? The second question is one of effect or impact:
To what extent does the Sampling Distributions program facilitate students' development of concepts
related to the central limit theorem? The first question requires a set of criteria or characteristics against
which the Sampling Distributions program can be compared. The second question requires a rationale to
guide the design of measures and outcomes that will provide meaningful feedback about the state of
students' concepts as a result of having interacted with the program. The remainder of this paper will
attempt to address the first question by providing a rationale for a set of characteristics that define "good"
educational software. The Sampling Distributions  program will then be compared against the set of
characteristics.

DEFINING UNDERSTANDING

Software Goes to School: Teaching for Understanding with New Technologies (Perkins, Schwartz, West,
& Wiske, 1995) provides the means for developing a list of software characteristics. The book consists of 15
chapters by numerous authors. Many of the authors have engaged in the systematic exploration of how
technology can help students learn with understanding in science, mathematics, and computing. The various
chapters present definitions and frameworks that address what it means to learn with understanding, ideas of
what constitutes software that facilitates understanding, and examples of software programs that incorporate
these ideas.

At the heart of the book is the conviction that only software that facilitates conceptual understanding will
be discussed. The authors recognize that a definition of understanding is needed in order to provide a
meaningful discussion of how software should be designed to promote understanding. Several authors offer
perspectives on what it means to learn with understanding or to behave in ways that reflect a deep
understanding of a concept. Nickerson (1995) offers a list of abilities that might constitute a demonstration
of understanding. An individual demonstrates understanding when he or she can:

• Explain a result or observation to the satisfaction of an expert.

• Apply knowledge appropriately in various contexts.

• Produce appropriate qualitative representations for a concept.

• Make appropriate analogies.

• Effectively repair malfunctions (of ideas, predictions, models).

•  Accurately predict the effects of change in structure or process.
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Although this list provides an intuitive guide for determining when understanding is demonstrated, it
does not provide an operational definition or a reliable means for identifying understanding. For the most
part, determining whether or not a student's learning has led to understanding is left to the judgment of an
expert (i.e., the instructor).

A similar list is delineated in a chapter by Perkins, Crismond, Simmons, and Unger (1995). A student
demonstrates understanding when he/she provides an explanation that:

• Provides examples.

• Highlights critical features of concepts and theories.

• Demonstrates generalization or application of concepts to a new context through the revision and extension of

 ideas.

• Provides evidence of a relational knowledge structure constructed of a complex web of cause and effect

relationships.

Although this list goes a step further than the Nickerson (1995) list by identifying a vehicle for
observing understanding (explanation), judgment on the part of the instructor (or a body of experts) is still
required to identify appropriate examples, a list of critical features, appropriate generalizations, and,
perhaps, the nature of the knowledge structure. As Nickerson (1995) points out, it is difficult to define
understanding without being circular. This is pointed out again in a chapter by Goldenberg (1995) in
which he discusses how computer simulations can be used to conduct research aimed to develop an
understanding of understanding. In other words, software designed to facilitate understanding is used to
gain insight into the nature of understanding, which presents a somewhat circular arrangement.

Nonetheless, a common theme presented in the book (Perkins et al., 1995) is that understanding is more
than just a collection of discrete pieces of information that might result from the rote memorization of
terms and definitions or hours of drill and practice. In summary, the authors of Software Goes to School
see understanding represented internally as a dynamic knowledge structure composed of complex
interconnections among concepts that enables the individual to effectively anticipate events, predict
outcomes, solve problems, and produce explanations, even under somewhat novel conditions.
Understanding can also be thought of as more than just a state of knowledge. Nickerson (1995) suggests
that understanding can also refer to the set of mental processes that produce a knowledge structure that is
more adequate, functionally, than the structure previously held by a learner. Understanding is both a state
and the process by which the state is produced, which again sounds somewhat circular. Perhaps it is the
elusive nature of understanding that makes it so difficult to teach and for students to learn.

MODELS OF UNDERSTANDING

So far, understanding is described (1) as a knowledge structure built of complex relationships among
concepts that allows an individual to produce explanations and predictions, and (2) as a set of processes that
enable an individual to revise old structures and produce new ones in order to deal with new contexts and
problems. A better description of the structure and processes that underlie this dualistic view of
understanding is needed in order to provide recommendations for software design that will promote the
development of understanding.
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Several of the authors of Software Goes to School (Perkins et al., 1995) offer models for both the
structure and process of understanding that range from the general to the specific. Carey and Smith (1995)
believe that the development of understanding is best captured by a constructivist perspective. They suggest
that the traditional view is that scientific understanding is developed solely by empirical observation or as
the product of inductivistic activity. They argue, and provide some evidence, that both the cognitive
development of understanding and the activity of scientists is better represented by a constructivist
epistemology in which beliefs held by the individual guide the generation of testable predictions and the
interpretation of observations. The authors provide a broad perspective regarding the type of activity that is
supported by understanding and that leads to the extension or development of new understanding.
However, the description does not present much detail about the processes that develop understanding or
that allow an individual to act with understanding.

Perkins et al. (1995) provide a model developed by Perkins (1993) called the Access Framework to
account for differences in peoples' ability to produce explanations. The model proposes that information
resides in memory in the form of explanation structures, an entity that sounds similar to the notion of a
schema or script (Rumelhart, 1980; Schank & Abelson, 1977). According to the Access Framework, some
parts of the explanation structure are well-rehearsed and form a foundation, but other parts are novel,
created at the moment as extensions of the structure.

The Access Framework holds that an individual needs access to four types of resources to produce
effective explanations. The four types of access are:

•  Access to knowledge that is relevant to a situation, context, or problem.

• Access to appropriate representational systems.

• Access to retrieval mechanisms that can recover relevant information from memory or external sources.

• Access to mechanisms (processes) that produce conjectures and elaborations in order to extend knowledge to new

 situations or to build new explanation structures.

Perkins et al. (1995) prescribe the types of instruction that help develop an effective explanation
structure. In addition to content knowledge, instruction should develop a broad repertoire of problem-
solving strategies to promote flexibility. Representations should be provided that are concrete and provide
salient examples of concepts that are not familiar to the student. Learning should occur in problem-solving
contexts in order to promote rich interconnections among concepts and to facilitate memory retrieval.
Activities should be designed that require students to extend and test ideas so that knowledge structures are
elaborated and extended. Although these prescriptions take a step toward defining software features that
promote learning for understanding, the account is still lacking as a description of the structure and
processes that constitute understanding.

Perkins et al. (1995) do provide some detail about two aspects of the Access Framework--the structure of
knowledge and the mechanisms used to retrieve information. They rely on connectionist models of
memory organization such as Anderson's (1983) ACT model of spreading activation. In the ACT model,
accessing information in one part of an information structure can prime other information for retrieval
given that relational links have been established through prior learning. This, however, is the extent of the
detail; no clear description of either how the connections are formed or the conditions that promote the
development of connections is given.
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Holland, Holyoak, Nisbett, and Thagard (1987) have argued that although connectionist models of
memory organization can account for a wide variety of phenomena, they have their limitations. Strong
evidence for spreading activation is provided by studies of lexical priming (Collins & Loftus, 1975;
Fischler, 1977; Marcel, 1983; Meyer & Schvaneveldt, 1971). However, there is much evidence suggesting
that spreading activation does not occur automatically and that it does not spread throughout the entire set
of concepts connected to the initially accessed information (de Groot, 1983; Thibadeau, Just, & Carpenter,
1982). Holland et al. argue, instead, that many memory and problem solving phenomena are better
explained by a model in which the spread of activation is mediated by rules that vary in their strength of
association and compete with each other for entry into working memory.

The goal of Holland et al. (1987) was to describe a model or framework that would begin to account for
inductive reasoning. I will refer to the Holland et al. framework as the Inductive Reasoning Model. For
Holland et al., an inductive reasoning system allows a person to:

• Organize experience in order to produce action even in unfamiliar situations.

• Identify ineffective rules for action.

• Modify or generate rules as replacements for ineffective rules.

• Refine useful rules to produce more optimal forms.

• Use metaphor and analogy to transfer information from one context to another.

This list of abilities and the Access Framework have many similarities.
I will attempt to describe the features of the Inductive Reasoning Model that are most relevant to the

discussion of how students develop understanding. Not all the activity of an inductive reasoning system
involves induction. According to the model, an individual is motivated to develop a knowledge structure
that provides accurate predictions. As long as correct predictions can be made by the system, very little
change is made to the system. Inductive processes are triggered by the failure of the system to make
effective, successful predictions. This assumption is similar to the constructivist perspective of Carey and
Smith (1995) mentioned above. Rules that lead to successful prediction are strengthened, and those that do
not are modified or discarded. A rule's strength is directly related to its ability to compete with other rules
that have their conditions satisfied. An important aspect of the Inductive Reasoning Model is that more than
one rule can be selected, and a limited capacity for parallel processing is assumed so that rules with the
highest "bids" can run simultaneously.

Rules are the cornerstone of the Inductive Reasoning Model. Rules are represented as condition-action
pairs similar to the production rules defined by Newell (1973; Newell & Simon, 1972). The Inductive
Reasoning Model proposes that information is stored in the form of production rules rather than static
pieces of information connected by links. Production rules are essentionally if-then statements: If the
condition is met, then the action is taken. An inductive reasoning system "decides" what action to take by
identifying rules whose conditions are met, by using processing rules to determine which rules with met
conditions are to be executed, and by executing the selected subset of rules. One implication is that
predictions and explanations are not formed by strict pattern matching, as might be proposed by
behaviorist or connectionist points of view, but rather are often constructed on the spot.

There are several activities that an inductive reasoning system performs to support the development of
understanding: rules that produce reliable predictions are strengthened; rules that are commonly executed
together become associated; the rule system is modified through the identification of new objects and



7. A FRAMEWORK FOR THE DEVELOPMENT OF SOFTWARE

81

events to which rules can be effectively applied; and new rules are produced to account for exceptions.
When a rule or set of rules produces useful and effective predictions, the primary change that occurs in the
inductive reasoning system is the strengthening of the rule set. When a novel object or situation is
encountered, the inductive reasoning system identifies a set of rules with the highest strengths that have their
conditions met. These rules are modified by adding the unique features of the novel object or situation to
the conditions of the production rules.

Whether the new extended rules gain strength, become modified, or are discarded depends on their
future utility. Finally, objects and events that match the conditions at higher levels in the hierarchy but
produce failures will invoke general system rules to generate new rules that record the failures as
exceptions.

One critical implication of the Inductive Reasoning Model is that effective prediction is dependent on an
ability to encode critical features of the environment. Holland et al. (1987) propose that an inductive
reasoning system has three broad responses to failure. Extreme failure encountered during the early stages
of learning prompts an inductive reasoning system to find a new way to categorize the environment. This is
dependent on an organism’s ability to encode features of the environment that are relevant to accurate
prediction. As learning progresses and successful predictions become more frequent, failure will result in
the generation of rules that account for exceptions. Again, the system must encode relevant features of the
environment that can be incorporated into the condition part of an exception rule. Late in learning, after
the default hierarchy has become quite specialized, failure is likely to be treated as evidence of uncertainty.
At this stage, failure results in the generation of rules that produce probability estimates instead of more
specific predictions. In general, the success of an inductive reasoning system is dependent on its ability to
detect and categorize features of the environment that evoke rules, that can be used to modify existing rules,
or that become the building blocks for the generation of new rules.

Holland et al. (1987) elaborate on how bids are determined, describe the nature of system processes that
might be used to modify rules and generate new ones, and provide convincing examples of how the model
can account for behaviors ranging from operant conditioning to complex problem solving. These details
are beyond the scope of this paper (and, at times, my full comprehension). Nonetheless, the features
presented above provide some implications for conditions that support the development of understanding. I
propose that the ability to provide explanations and the ability to make predictions stem from similar
knowledge structures and cognitive processes, and that both of these abilities reflect understanding. The
Inductive Reasoning Model suggests that understanding is facilitated when learning conditions are
established that (the I prefix is used in reference to the Inductive Reasoning Model):

I1. Facilitate the student's encoding of relevant information by relating new entities to familiar,

well-rehearsed encodings.

I2. Promote the simultaneous encoding of key features of the environment.

I3. Provide ways for the student to make and test predictions.

I4. Promote frequent generation and testing of predictions.

I5. Provide clear feedback on the outcomes of predictions.

I6. Make it clear to the student which features of the environment are to be associated with the outcome

of a prediction.

I7. Promote the encoding of information that relates the variability of environmental features to specific

actions.
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This set of recommendations emphasizes the roles that encoding, prediction, and feedback play in the
development of understanding. All three are needed to support the strengthening, revision, and generation
of rules, as well as the fleshing out and extension of categories and concepts. Consistent with the definitions
of understanding provided by Nickerson (1995) and Perkins et al. (1995), the Inductive Reasoning model
implies that a student's ability to provide explanations and to solve problems is dependent on the
development of a complex web of interrelationships among concepts (i.e., rules).

SOFTWARE FEATURES THAT FOSTER UNDERSTANDING

Several of the authors in Software Goes to School. (Perkins et al., 1995) prescribe conditions that
promote the development of understanding. Nickerson (1995) provides five maxims for fostering
understanding that place an emphasis on encoding, exploration, and prediction, which is consistent with the
characteristics of an inductive reasoning system. Nickerson makes the important point that although
technology does not promote understanding in and of itself, it does represent a tool that can readily
incorporate the five principles listed above. Real-world models can be developed as explorable microworlds
that allow students to test out assumptions, make predictions, highlight misconceptions so that they "stand
out," and promote active processing by changing parameters and defining entities. Computer simulations
can present dynamic representations that go beyond the modeling of static entities by making the processes
that produce phenomena more concrete and observable.

A list of software features that promote the development of understanding can be developed through an
integration of Nickerson’s first four maxims with the learning conditions suggested by the Inductive
Reasoning Model (the F prefix is used in reference to software Features). These features include:

F1. The program should start where the student is, not at the level of the instructor (I1).

 The program should accommodate students' conceptual development in a domain, common

misconceptions that occur, and the knowledge that students typically bring to the classroom.

F2. The program should promote learning as a constructive process in which the task is to provide

 guidance that facilitates exploration and discovery by

(a) providing ways for the student to make and test predictions (I3),

(b) promoting frequent generation and testing of predictions (I4), and

(c) providing clear feedback on the outcomes of predictions (I5).

F3. The program should use models and representations that are familiar to the novice. Novices tend to 

generate concrete representations based on familiar concepts or objects from everyday life. This will 

facilitate the student's encoding of relevant information by relating new entities to familiar, well

rehearsed encodings.

F4. Simulations should draw the student’s attention to aspects of a situation or problem that can be

 easily dismissed or not observed under normal conditions. The program design should

(a) promote the simultaneous encoding of key features of the environment (I2),

(b) make it clear to the student which features of the environment are to be associated

with the outcome of a prediction (I6), and

(c) promote the encoding of information that relates the variability of environmental features to

 specific actions (I7).
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Nickerson’s (1995) fifth maxim describes features of the classroom environment that best promote
understanding. Another chapter from Software Goes to School. (Perkins et al., 1995) by Snir, Smith, and
Grosslight (1995) provides some additional recommendations for how software can be used in the
classroom to promote understanding. A combination of Nickerson’s fifth maxim with three
recommendations made by Snir et al. provides a set of general guidelines for the incorporation of software
into a course in which the intent is to develop students’ conceptual understanding (the C prefix is used in
reference to the Classroom or Curriculum). These guidelines consist of:

C1. Provide a supportive environment that is rich in resources, aids exploration, creates an

atmosphere in which ideas can be expressed freely, and provides encouragement when students make

 an effort to understand (Nickerson, 1995).

C2. The curriculum should not rely completely on computer simulations. Physical activities need to be 

integrated with computer simulations to establish that the knowledge gained from simulations is

 applicable to real world phenomena (Snir et al., 1995).

C3. Instructional materials and activities designed around computer simulations must emphasize the

interplay among verbal, pictorial, and conceptual representations. Snir et al. (1995) have observed

 that most students will not explore multiple representations on their own accord and require

 prompting and guidance.

C4. Students need to be provided with explicit examples of how models are built and interpreted in

 order to guide their understanding (Snir et al., 1995). Although we are guaranteed that students will always 

attempt to come to some understanding of what they experience, there is no guarantee that students

 will develop appropriate and acceptable models even when interacting with the best-designed

 simulations.

EVALUATING A SOFTWARE PROGRAM

As stated in the introduction, my intent for detailing a list of software features and guidelines was to
evaluate the merits of the software that I developed, Sampling Distributions. How well does the Sampling
Distributions  program fare when compared to the recommended software features outlined above? For
example, does the program meet students at their current level of understanding (F1)? This is a difficult
question to answer. The program is used in the second half of the term, once students have had several
weeks of experience with descriptive statistics and frequency distributions. I assume that the concept of a
frequency distribution, continuous distribution, standard types of distributions, and various descriptive
statistics such as the mean, median, standard deviation, and interquartile range are familiar given that they
form a major part of the content and activities presented in the first half of the course. The Sampling
Distributions  program uses these concepts to present information related to the central limit theorem. In this
respect, the program appears to start where the student is and uses representations that should be familiar to
the student.

Does the program reflect the emphasis placed on encoding (F4)? There are many ways in which
Sampling Distributions  has been designed to facilitate the encoding of key features as well as the
association of related features and ideas. For example, the program reinforces the association between labels
for distributions and the shape of the distributions as the student selects one of the standard forms by
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clicking a button in the Population window. Sampling Distributions  also supports the presentation of
multiple representations simultaneously so that concepts from different representational systems become
associated (F4c). A student can, if prompted, observe how the various population parameters change as the
shape of the distribution is manipulated. For example, students can be instructed to start with a normal
distribution and then incrementally increase the frequency at the high end of the distribution by clicking
the up arrow for the value 10. Students are asked to record the population parameters after each
incremental increase. A comparison of the change in both the mean and the median provides a way for
students to observe directly that extreme values have a greater effect on the mean than the median. This is
an example of the type of guidance that Snir et al. (1995) suggest is needed to make appropriate use of
simulations in the classroom. This also provides an example of how experience with the Sampling
Distributions  program can help students create associations between actions and outcomes, a necessary step
for building understanding that is implied by the Inductive Reasoning Model (F4b).

Encoding enhancements are also present in the Sampling Distributions window. Students observe the
creation of the sampling distribution, one sample mean at a time, so that they have a visual, concrete record
of the process (F3). Verbal and visual referents are presented together (the label "Distribution of Sample
Means" is placed above the frequency distribution) to promote association. The graphs provide visual
representations of center and spread, and the sampling distribution statistics provide symbolic counterparts
(F2c and F4a). Again, as pointed out by Snir et al., the students cannot be assumed to make these
connections automatically, so activities are designed to highlight the correspondence between the visual
representation and the sampling distribution statistics.

For example, students can be asked to identify which statistic corresponds to the spread of the sampling
distribution of sample means--the typical choices are the mean of sample standard deviations or the
standard deviation of sample means (F4b). Some students inevitably select the former, which can prompt a
discussion of which is the correct selection and why. This can lead to focusing on the theoretical value of
 σ
 n 

   and its relationship to the sampling distribution. I also have students position the Population and

Sampling Distributions windows so that they can see both the population parameters and the sampling
distribution statistics, then ask them to identify the correspondences between the two sets of values (F4a).
Deeper understanding can be promoted by asking students to provide explanations of how two values are
related (e.g., that the mean of sample means provides an estimate for the population mean or is expected to
equal the population mean).

The  Sampling Distributions program can facilitate guided exploration and discovery by allowing
students to change the shape of the population or the size of the samples drawn and then run a simulation
by randomly drawing a large number of samples (F2a). Students are provided with a sheet that asks them to
start with a normally distributed population and to draw 500 random samples. A recording sheet is
provided that prompts the students to change the sample size in increments from n = 5 to n = 100 (F2b).
The sheet provides spaces for the student to record the sampling distribution statistics that result and to
describe the shape, spread, and center of the two sampling distributions (F2c). After completing the last run
for n = 100, several questions are presented to the students to promote the development of explanation
structures: What is the relationship between sample size and the spread of the sampling distributions? Which
distribution tends to have the larger spread, the one for sample means or the one for sample medians? At
what sample sizes do each of the sampling distribution statistics begin to stabilize (not change significantly
as the sample size is increased)? Did the sampling distribution statistics provide good, accurate estimates of
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the population parameters? Overall, did the sampling distribution statistics behave in accordance with the
central limit theorem?

Some of these questions might prompt students to conduct additional runs (F2b). For example, a student
may conduct several runs at n = 5, several runs at n = 10, and several runs at n = 25 to see if fluctuations in
the sampling distribution statistics are larger for one sample size than for another. This type of activity
helps students develop specificity in their understanding (e.g., there is a bit of variation in the standard
deviation of sample means for sample sizes below 15 or 20, but the statistic becomes more consistent with
larger samples) and to form generalities (e.g., regardless of the sample size, the mean of the sample means
is always very close to the population mean).

Once a student completes the prescribed simulations, he/she is free to explore (F2a and F2b). The
activity suggests that students create different population distributions by selecting one of the preset
distributions provided by the program or by creating distributions of their own design. I provide
illustrations of a bimodal and a trimodal distribution as possibilities (see Figures 3 and 4, respectively).
Students typically need 10-15 minutes to go through the prescribed simulations. They typically spend 30-
45 minutes exploring non-normal population distributions using additional recording sheets provided with
the activity.

Figure 3: Creating a bimodal distribution in the population window

I stop the activity after an hour's time and engage the class in a discussion of what they observed. Classes
come to the consensus that with large enough samples the sampling distribution of sample means will tend
to be normal in shape regardless of the shape of the population. The use of the program to test out
predictions helps students to draw an abstract generalization from concrete experience and observation
(F3). I am sure that a physical apparatus could be constructed that would provide students with a similar
experience, but I believe it would not allow students to explore as many possibilities in the same amount of
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time and with the same amount of feedback on the relationship between visual and symbolic representations
of the sampling distributions.

Figure 4: Creating a trimodal distribution in the population window

FUTURE DEVELOPMENTS

My conclusion is that the Sampling Distributions  program does exhibit many features that should
promote conceptual development and understanding. Although it is easy to see the features that are
included in a piece of software, it is more difficult to take an objective look and identify features that are
missing. A review of the models of understanding presented earlier has helped me identify enhancements
that may improve the effectiveness of the program. For example, lines similar to those used in the Sampling
Distributions window can be included in the Population window to identify the population mean and
median. This should facilitate the formation of associations between the visual placement of the symbolic
values in the graph of the Population Window (F1) as well as support an understanding of the relationship
between the population parameters and the sampling distributions (F4). Another idea is to provide a button
that superimposes the shape of a normal distribution over the bar graphs for the sampling distributions,
based on the theoretical parameters of the Central Limit Theorem (F2). This would facilitate students'
judgment of whether or not the sampling distributions are normal in shape and match the implications of
the central limit theorem.

Although Sampling Distributions has many features that should help students develop their conceptual
understanding of sampling distributions, this does not necessarily mean the program is effective. This is an
empirical question that requires research on whether or not students’ conceptual understandings change as
a result of using the software and, if so, in what ways. My colleagues (J. Garfield and B. Clothier from the
University of Minnesota, and B. Chance from the University of the Pacific) and I will begin to explore the
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outcomes related to students interactions with Sampling Distributions during the upcoming year. Our
research will initially look at students’ understandings and expectations for the shape, center, and spread of
sampling distributions. In keeping with the guidelines for the incorporation of software into a course stated
above (C1 to C4), the research will explore how understanding changes when the Sampling Distributions
program is used in different activities under different conditions. One planned study is to compare the
effects of having students explore the effects of many different sample sizes for only a few, preset
population distributions with the effects of having students examine sampling distributions generated from
many population distributions but over a range of fewer sample sizes. We also plan to examine differences
in understanding between students who interact directly with the Sampling Distributions  program and
students who receive instruction about sampling distributions either through a primarily lecture-based
format or through the demonstration of other simulations.

We plan to gather several different types of information. One source of information will consist of
interviews conducted with students as they use the software, which is similar to the approach described by
Goldenberg (1995). Along with the interviews, we plan to conduct pretest/posttest assessments using a
graphics-based measurement instrument. Pretests will be given to students in introductory statistics courses
at the point in the course when the central limit theorem is typically introduced. The posttest will be
administered after students receive more detailed instruction on sampling distributions. The instruction may
include the presentation of simulations or hands-on experience with sampling distributions either through
experiments with physical objects or using the Sampling Distributions program.

An example of the graphs for one test item are given in Figure 6. After looking over the graphs, students
are asked to respond to a question like the following:

Which graph represents a distribution of sample means for samples of size 4? (circle one).

Students are also presented a set of reasons and asked to select the ones that come closest to matching
their reasons for their chosen graph. Some examples of the reasons are shown in Figure 5.

❏ I expect the sampling distribution to be shaped like a NORMAL DISTRIBUTION.

❏ I expect the sampling distribution to be shaped like the POPULATION.

❏ I expect the sampling distribution to have LESS VARIABILITY than the POPULATION.

❏ I expect the sampling distribution to have MORE VARIABILITY than the 

POPULATION.

Figure 5: Reasons for selecting a graph (in Figure 6)

For each situation, a second question is asked with respect to drawing samples of a larger size, such as:

Which graph represents a distribution of sample means for samples of size 25? (circle one).

Students are again asked to identify the reasons for their choices. Some additional reasons are included,
as shown in Figure 7.
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The distribution for a population of test scores is displayed below. The other five graphs labeled A to E
represent possible distributions of sample means for 500 random samples drawn from the population.

Population Distribution

Figure 6: Example of a test item from the Sampling Distributions Reasoning Test
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❏ I expect the second sampling distribution to have MORE VARIABILITY than the first.

❏ I expect the second sampling distribution to have LESS VARIABILITY than the first.

❏ I expect the second sampling distribution to look MORE like the POPULATION than the

first.

❏ I expect the second sampling distribution to look LESS like the POPULATION than the 

first.

❏ I expect the second distribution to look MORE like a NORMAL population than the first.

❏ I expect the second distribution to look LESS like a NORMAL population than the first.

Figure 7: Reasons listed for selecting a second distribution

What do we hope to accomplish with this line of research? Information from the interviews will
hopefully provide insights into what students do and do not attend to as they use the software, whether or
not prompts are needed to direct students’ attention to various aspects of the program, the development of
students’ thinking as they interact with the program, and features of the program that could be enhanced,
improved, or added to make the characteristics of sampling distributions more evident. Students responses
to the items on the pretest should provide us with a better understanding of what students understand and
do not understand about sampling distributions prior to receiving more detailed instruction or experience
with sampling distributions. Posttest results will help us determine the effects of different types of
instruction on students’ understanding and to make comparisons among different approaches to teaching
students about sampling distributions. Just as attempts to define understanding tends to lead us in circles, I
expect that our investigations will produce a continuous cycle in which increases in our understanding of
how and what students learn about sampling distributions lead to further revisions of the software and
research methods, as well as to a better understanding of how to teach this complex and rich topic in
statistics.
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