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3. DEVELOPING PROBABILISTIC AND STATISTICAL REASONING
AT THE SECONDARY LEVEL THROUGH THE USE OF

DATA AND TECHNOLOGY

James Nicholson
Belfast Royal Academy

INTRODUCTION

Technology offers an end to the tedious and laborious computations in data analysis, but it also offers
the possibility of a total lack of feeling for what is being done in the analysis, and a blind assumption that if
the computer or calculator has done it then it must be right.

However, we can make use of technology, and realistic datasets, to enlarge our students’ horizons in
various ways.

• We can provide students the experience of how random random events are; for example,  by having
students analyze large datasets, conduct simulations, and generate samples from large distributions. We can
use realistic datasets with students throughout the secondary level to develop their critical evaluative skills
over a period of time.

• We can give students experience on which to build their intuition about what is going on in some of the
sophisticated and some of the not so sophisticated analyses that the technology will do for them. We can
illuminate some difficult concepts, including some in which the initial effect of using technology is often
to produce misconceptions.

I work with students ages 11 - 18 in a selective (grammar) school of about 1,400 students. In November,
1995, my classroom was equipped with a computer and LCD panel, which has enabled me to use a dynamic
blackboard during lessons and in the computer lab. This has been particularly useful because of the
constraints on getting to a computer lab, which have been very busy with scheduled Information
Technology and Computer Studies classes. As of September, 1996, I hope to have better access to a lab,
because another lab is being created that will not have regular classes scheduled in it, but will be available
for booking on a week-to-week basis. However, the Information Technology class is identified as a cross-
curricular theme in the Northern Ireland curriculum; thus, all subjects have Information Technology classes
and so the demand on a computer laboratory could be very high in a school the size of the Academy.

CRITICAL EVALUATION

Statistical packages and straightforward spreadsheets now offer very powerful charting facilities that take
the hard work out of the presentation of information in graphical form. In EXCEL, which produced the
charts used in the illustrations below, the Chart Wizard facility allows a chart to be drawn with virtually no
effort--highlight the section of data to be presented; click and drag to position and size the chart; and then
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answer a series of questions as to the type of chart, whether the data is in rows or columns, and how the data,
axes, and chart is to be labeled. By doing this, EXCEL produces a wonderfully professional looking graph;
however, EXCEL does exactly what you tell it, and cannot tell if the data makes sense, or if the type of
graph chosen is appropriate. Somehow we need to develop in the students, at an early age, a critical faculty
to evaluate different forms of presentation, so that they can reject those that are definitely inappropriate and
select the most informative graph when there is more than one appropriate possibility.

The charts shown here all relate to the simple dataset shown in Table1, which reports the sources of
revenue for a Rugby Club over the first quarter of the year. Figure 1 shows this in the form of a three-
dimensional comparative bar chart. Figure 2 is a two-dimensional stacked bar chart. Figures 3-6 report the
four sources of revenue as pie charts. One problem becomes immediately apparent when looking at the
four pie charts together--all of them have one sector representing 50% of the dataset. One would like to
think that anyone drawing these would be struck by the visual pattern and question why this is so. Note that
it is a trivial matter to go back into the chart wizard to use only the first three columns of figures. Even with
a set of four pie charts presented as in Figures 3-6, many students do not query its appropriateness. If only
one pie chart is used, then very few students feel that there is something wrong. The stacked bar chart in
Figure 2 has already made this adjustment--only the first three columns are needed because the fourth
column is represented by the overall height of the bar in each case.

Table 1: Sources of revenue for the rugby club

Jan Feb March Total

Advertising 750 500 800 2050
Sponsorship 1150 1200 1200 3550

Ticket Revenue 2450 2050 3200 7700

Totals 4350 3750 5200 13300
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Figure 1: A three-dimensional comparative bar chart
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Figure 2: A two-dimensional stacked bar chart
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The experience of using these tools can help develop critical faculties, provided that the environment for
exploring with them is reasonably focused, particularly when a student is just beginning to use them. There
is no need for the datasets to be complicated; indeed, I think there is a great deal to be said for using
extremely simple datasets like this one when the most basic principles are being assimilated. The age at
which the students are able to comprehend the dataset needs to be considered carefully, because if we
present complex datasets that are beyond the students’ comprehension, they have no way of evaluating the
presentation of the chart.

In the past, I have found that a large number of students attempting to study statistics at a more advanced
level have found it difficult to provide adequate interpretations of their results within the context of the
problem situation. I would expect that students who have had experiences such as those described above,
while they are still young, would become better communicators of formal statistical conclusions, but this is
an area where I think there is a need for further research.

ORAL PRESENTATIONS

Many students seem to feel that interpreting datasets is very difficult. They look for subtle nuances and
ignore the glaringly obvious, or they confuse correlation with causation. Encouraging students to present
their conclusions to their peers, and using technology to instill confidence in the look of their presentation,
whether it be oral or in a poster format, both help students gain an understanding of how to communicate
in statistics.

In my third form (Grade 9) class, students had to conduct a statistical investigation. They were given
some possibilities, but were encouraged to choose their own. The students’ choices ranged from
investigations of videos to examination marks, some used secondary data and others collected their own
primary data. The group of students were in a high academic stream, by general ability, with quite varied
motivation in mathematics. I chose the investigation outlined below as the first to be reported back, and we
then discussed its merits as a group.

This investigation used fairly simple statistics, such as correlation, and involved virtually no calculations.
The computer did all the work in constructing the scatterplots. The students collected the data from cards
and entered it into the database. They were then able to explore what the data said--the reality of the
context to them and the relative simplicity of the data meant that they could communicate meaningfully
what they found. Even those in the class who had virtually no prior knowledge of basketball (which was the
majority, especially among the girls) could understand the conclusions, and actually learned something
about the game from hearing the presentation.

The Tabletop software program (Hancock, Kaput, & Goldsmith, 1992) offers an extremely powerful
medium in which students can explore multivariable contexts at a fairly young age. The visual
representation allows them to deal qualitatively with the interrelationships, and to develop an intuitive
understanding of the distinction between correlation and causation. The analysis of a situation that students
choose for themselves, and are interested in, provides a framework in which many of the “big ideas” in
statistics can begin to develop naturally.

In this very simple investigation, the boys proposed to compare different players in the American NBA,
which is now televised in the UK on Channel 4 and on satellite. Their initial idea was that height would be
the major factor in the players’ performance. They collected raw data on 40 players, choosing 15 guards,
15 forwards, and 10 centers, entered the data into the database, and then investigated the relationship
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between the various summary statistics that are part of American sport culture. Using an overhead projector
with an LCD panel connected to the computer, they presented the conclusions from their investigation to
the rest of the class.

They began by explaining the composition of a five-man basketball team (2 guards, 2 forwards, and 1
center) and showed the database they had constructed. In their first slide (see Figure 7), they showed that
the correlation between height and average number of points was positive, but weak, and concluded that
factors other than height were involved in a player’s performance. The grouping of the symbols that show
the players’ positions was commented on and also in their next slide (not reproduced here), which showed a
negative correlation between the height and number of assists.

Figure 7: Scatterplot of height and average number of points for each position

Reference to the role of the different positions in a basketball team, and the different height distributions
of the different positions, offered a causal explanation of the correlation observed through the relationship
of these two quantities to the third quantity (position). Similar treatment of the scatterplots of assists & steals
(see Figure 8) and blocks & rebounds developed the understanding of the roles of each of the positions.

I am just starting to explore the possibilities that Tabletop offers for conducting multivariable analyses.
Figure 9 shows a scatterplot of lifespan and thorax length from the Fruitfly dataset (Hanley & Shapiro,
1994), which has 5 sets of 25 observations in a designed experiment looking at sexual activity and the
lifespan of male fruitflies. Tabletop uses icons, which you can design yourself, to represent individual
records. Here, five different icons were used to identify the five sets. The two experimental groups, in which
the male fruitflies were supplied with either one or eight virgin females, are labeled with x followed by the
number of females. The three control groups, who were supplied with no females or with newly pregnant
females, are labeled with a small black square, followed by the number of females. Techniques such as
analysis of variance and multiple regression are appropriate for a full investigation of the results of this
experiment. However, a good deal of information can be seen informally from the groupings in Figure 9
and in the boxplots in Figure 10, which shows the five groups separately (the visual impact of the scatterplot
is considerably greater when viewed in Tabletop, with different colored icons).
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Figure 8: Scatterplot of assists and steals for each position

Discussion of these figures drew out some important ideas. Examining the five groups showed that the
two experimental sets had a lower distribution than the corresponding control groups, but there was
considerable overlap between all groups; thus, it would not be possible to make an inference about which
group a fruitfly came from by examining its lifespan. By examining Figures 9 and 10, the students
concluded that the factor being controlled here is not the only influence. This generated debate that
centered around the distinction between association, which they could see, and causation, which they had no
backgound knowledge to determine the direction of. Interestingly, there was an inherent understanding in
this context that the variation between fruitflies within a group was the result of other factors, rather than
“errors,” which the language of formal regression studies pushes them toward.

UNDERSTANDING VARIABILITY

One of the biggest difficulties I encounter in teaching statistics to students or in discussing the teaching
of statistics with mathematics teachers who do not have much statistical background in their training, is the
underestimation of the amount of randomness that there is in random events. I see various ways in which
technology can help in developing a more accurate intuition concerning randomness, by providing an
experience-based frame of reference within which intuition can operate.

We all experience random events--even 11 and 12 year-old students have familiarity with it from their
experience in playing games of chance. They do not experience it in any systematic way, however, and
misconceptions such as “six is the hardest number to throw” are observed. The process of systematically
collecting observations from random events such as throwing dice, or tossing a number of coins, is a fairly
tedious and time-consuming one, but I think that the collection of data in a context that the pupils can
easily relate to is worthwhile. However, technology can be used in two ways here to take some of the
drudgery out of the process.
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Figure 9: A scatterplot of lifespan and thorax length from the fruitfly dataset

Figure 10: Boxplots of experimental and control groups in the fruitfly dataset
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The graphs in Figures 11 and 12 show data that was collected by a Form 1 (Grade 7) class. Each pupil
recorded the scores on 100 throws of a die. The throws were actually recorded in order of occurrence so
that we could also analyze how often runs of 2, 3, 4, … of the same number happened. The totals for each
pupil were entered into a spreadsheet. The students then grouped sets of six pupils together, and then
grouped the entire class together. Figure 11 shows the first four pupils’ results, and four groups of six
results are shown in Figure 12. By being able to see the variation in individual results for a substantial
number of cases and also for larger groups, an understanding of the way the proportions observed behave
as larger groups are taken can be fostered over a period of time. The various individual student graphs and
the graphs of the grouped results are displayed in class and are referred back to at various stages later in the
course when we are dealing with variation again.

Consideration of the rate of occurrence of single numbers and runs of 2, 3, 4, … develops an
understanding of the problems involved in estimating unknown probabilities--with 100 throws each, the
students think they have a lot of data. The theoretical proportions are 83% for singles, 14% for runs of two,
2% for runs of three, 0.4% for runs of four, and in a class of 29 pupils it would be unwise to bet against
getting at least one run of five or more. Table 2 shows the distribution of the lengths of the runs obtained
by eight students using a fair die; there is considerable variation in the observed distributions collected by
the students. The students did not know what the theorectical distribution was for this situation, and the
variation in the observed results provided the basis for a lively discussion of what the true proportions
actually are.
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Figure 11: Dice throwing results for four different students
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Figure 12: Results of dice throwing for four groups of six students each

 Table 2: Lengths of runs observed using a fair die

RUN 1 2 3 4
David 67 15 1 0
Emer 76 9 2 0
Keith 48 18 4 1
Ryan 58 11 2 3
Laura 75 8 3 0
Carole 63 14 3 0
David 79 9 1 0
Jenny 64 12 4 0
TOTAL 530 96 20 4

This also works well with a biased die, but I find one advantage of the proportions of lengths of runs is
that with guidance the theoretical distribution is easy for the class to derive and check against the
distribution of the pooled results. The discussion following this exercise can be lively, as I have already said,
and for many pupils the actual results are the main, if not the only, focus of attention. However, some pupils
begin to show a qualitative understanding of some of the principles of interval estimation. Certainly, the
entire group displays an enhanced grasp of the principle that relative frequencies of observations provide
estimates of the probabilities of events occurring.

SIMULATIONS AND OTHER ELECTRONIC AIDS

The process of generating random data is one that can be done very efficiently using an electronic
medium such as a graphical calculator or a computer program. However, I find that some students find it
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hard to accept initially that the medium accurately models the “real thing.” They often have poorly
formed ideas of how randomness behaves. For example, they might believe that if five heads have appeared
in a row, then the law of averages means the next should be a tail, and so forth. When an electronic
simulation does not match their intuition, it is more comfortable to think it is doing something different
rather than to adjust their intuition. Following up a dice throwing experiment with a dice throwing
simulation, and finding similar degrees of variability in the two sets of results, seems to reassure the
students. I think that it is time well spent, because the students find it easier to imagine, in the future, how a
simulation can be set up if they can think of the concrete cases they have in their own experience. Once
they are convinced that the computer’s random behavior is similar to the real thing in one context, it ceases
to be an issue.

One can use commercially available simulation software; however, it is now relatively easy to generate
fairly informative simulations using macros in statistical packages and in spreadsheets without actually
having to program. Also, the Discovering Important Statistical Concepts Using Spreadsheets (DISCUS;
Hunt & Tyrrell, 1995) materials exist as a series of electronic workbooks in EXCEL, and have some
excellent simulations in them that are ready to run! DISCUS also uses EXCEL’s data analysis tools and
charting facilities to provide very strong visual images of relationships that exist. For instance, students can
explore the relationship between the binomial, Poisson, and normal distributions by superimposing
distributions in which the student defines the parameters. Tyrrell (1996) provided a fuller description of the
material covered and of the style of the materials.

APPLICATIONS OF SAMPLING

Over the past few years, I have been moving away from a fairly theoretical-based delivery of the A-level
Statistics course that I teach toward trying to find ways that the students can actually have some experience
of what the results mean in practice. As I have argued already in this paper, I believe that such experience
informs their intuition; thus, their analysis of a new problem situation is more likely to be accurate.

Initially, this development in style was not based on the use of technology. It was based on the
collaborative efforts of a large group in which the group would look at the same dataset in different ways
and pool the results, which is similar to the way that I would pool the results of a dice throwing experiment
with the younger students.

Sampling, linear regression, and correlation are topics that are encountered early on in most people’s
statistical experience, whether it be in a mathematical statistics course or in applications of statistics in other
subject areas. The least squares line of regression and the product moment correlation coefficient are well
defined functionally, and many calculators and computer software packages will generate them after
elementary data entry procedures are followed.

I teach an A-level course that has 50% statistics in which these topics appear. I had been concerned that
the students’ perceptions of the regression line seemed almost to extend to a belief that this was the
underlying relationship, and that the line and predicted values generated by the line of regression would be
given to very high degrees of accuracy. These would be unwarranted even due to the accuracy to which the
data had been recorded, before any consideration of the variability of the line due to sampling. I had also
been concerned about the students’ grasp of confidence intervals and particularly how dependent they are
on the data used, and we were going to be looking at different sampling methods. We had already spent
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some time early in the course working with boxplots and had used them to make comparisons between
datasets with different centers and spreads.

Burghes (1994) contained a dataset that contains a variety of information on 200 trees on a piece of
land that the owner wishes to sell. It is in a chapter dealing with data collection, and the activity suggested is
for students to choose one of a number of sampling methods and construct an estimate of the average value
of the various quantities, such as value, age, girth, and the proportions of different types of trees. The class
undertook this activity, and we then pooled all the results and constructed boxplots of the data resulting
from the various (point) estimates of these quantities using random, systematic, and stratified samples. From
the class 20 students, six or seven estimates were obtained for each sampling strategy.

These boxplots provided considerable insights into a number of different and difficult concepts, which I
will expand on below.

SAMPLING TYPES

The nature of stratified sampling is illustrated by Figure 13, in which the proportion of oaks in each
sample remained the same, because that was how the stratification had been constructed. The perfectly
consistent prediction (of the true proportion) provided a focus for what makes a good estimator. In the
same diagram, the contrast between the profiles of the random and systematic sampling estimates opened
up some worthwhile discussion as to why the systematic samples provided much more consistent estimates
than the random samples in this case and whether we could expect that in all cases.

                

Figure 13: Example of stratified sampling

Figure 14 shows the estimates of the monetary value of the trees from the different sample types, which
led to a discussion questioning whether the size of our samples was sufficient to allow us to make strong
statements concerning the relative merits and demerits of different sampling methods. Because the students
had to do the work in producing the data from samples, they showed a greater understanding than previous
groups of the “costs” involved in improving the quality of your conclusions by considering more data.
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Figure 14: Boxplots of estimates of the monetary value of the trees

 INTERVAL ESTIMATION

The ideas of interval estimation were able to be developed quite naturally from the experience of
generating a number of different point estimates of the same quantity and finding that they did not always
produce the same value for the estimate and that the consistency of the estimate was affected by a wide
range of factors, such as the size of sample used, the method of constructing the sample, the underlying
variability of the quantity, and so forth. This led to interesting investigations of other datasets in an attempt
to quantify some of these effects.

The process of repeating a number of samples using the same procedure to generate them, but obtaining
different datasets each time and sometimes quite different estimated values, meant that the students had an
experience to draw on, which informed their intuition when dealing with subsequent situations involving
sampling. Instead of a set of abstract rules (e.g., that the variance of estimated values varies inversely with
the sample size) that previous classes could learn and apply, often very successfully, this group began to
appreciate intuitively, based on experience, how the consistency of the estimates would vary.

REGRESSION AND CORRELATION

This led to examining the dependence on the data used in other circumstances, in particular in linear
regression and correlation. Table 3 shows the body and heart masses of 14, 10-month old, male mice. We
examined the regression lines and the predicted heart masses for certain body masses that would be
generated by samples of the dataset.

Each of the data points was discarded in turn. The values of the correlation coefficient, the coefficients
of the equation of the line of regression of heart mass on body mass, and the predicted values of heart mass
for body masses of 20, 35 and 55 grams were computed. Figure 15 shows the predicted values obtained in
boxplots. Much greater variation arose when smaller samples (e.g., using 10 out of 14 mice) were chosen
and when other datasets were used in which the correlation was not as strong.
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Table 3: Dataset of body and heart mass of 14 mice

Mouse Body mass
(g)

Heart mass
(mg)

A 27 118
B 30 136
C 37 156
D 38 150
E 32 140
F 36 155
G 32 157
H 32 114
I 38 144
J 42 159
K 36 149
L 44 170
M 33 131
N 38 160

Figure 15: Predicted values shown in boxplots

Again, a number of important issues arose from this exercise:

• The regression line was appreciated more as being an estimate of the underlying trend.
• The regression lines based on various samples were seen to be diverging as you move from the center of the x-

values, and the boxplot above shows clearly the greater consistency of predicted values close to the middle of
the range.

• The problems associated with extrapolation take on a new dimension. Not only may the existing fairly strong
linear relationship not continue, but even if it does the predicted values are increasingly unreliable.

Upon reflection, I was pleased at how coherently the different aspects of this work fit together and
indeed even provided reinforcement for the other concepts. I was also particularly pleased at how the
students’ intuitive understanding of some quite difficult and subtle concepts seemed to be more secure
because it was experientially-based to some degree rather than purely learned by formal mathematical
principles (theorem and proof), even though these are still an essential part of statistics.
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I then started to examine whether technology could help in the production of the data as well as with the
analysis and visual representation. The diagrams below were produced using the student version of Minitab
for Windows (Version 9). The small routines were written for Minitab (called “executable macros”),
although I believe the principles can be adapted quite easily for other software and hardware.

I will deal explicitly with three cases, but the principles and methods involved are applicable in a variety
of other situations and also reinforce a number of other ideas in passing, which I will try to touch on
briefly. I have based them on data that was randomly generated within the macros used, but I would
recommend working with real, large datasets when possible.

DISTRIBUTION OF SAMPLE MEANS

The variance of the mean of a sample of size n from a population of variance σ2 is σ2/n. Many students
have an intuitive feeling that a larger set of observations should provide a better estimate, without any firm
grasp of the criteria on which this could be judged. Indeed, it is very difficult for them to resolve the
interrelating nature of the distribution of the population, the distribution of the sample, and the sampling

distribution of a statistic such as x . The macro developed here uses the following procedure: (1) it asks the
user to provide the mean and standard deviation of the population and the sample size to be used; (2) it
generates 40 columns of data each with the requested sample size (limited to 80 when 40 sets are used,
because Minitab student worksheets are limited to 3,500 cells); and (3) it then computes the mean of each
of the 40 columns, before drawing the graph of the sample means as a boxplot. Using 40 pieces of data to
draw the boxplot allows one to get a good idea of the variability of the distribution of the sample means in
each case. By systematically varying the standard deviation and the sample size, the student can build up an
experience-based intuition of the behavior of the variability of the sample mean. Figure 16 shows the cases
in which the standard deviation and sample size were 5 and 80, 5 and 10, and 15 and 10, respectively. The
population mean in all cases was 34. Apart from the changing behavior of the variability of the sample
mean, there are a number of important other points that can be made: there are 40 point estimates of the
population mean used in each boxplot, and the basis of confidence intervals as estimators, which are more
informative than simple point estimates, can be seen comparatively easily. In all cases, the point estimates
are centered around the true value of the parameter. With a population standard deviation of 5 and a large
sample of 80 observations, the sample means gave estimates of the population mean that are consistently
very close to the true value, whereas with a larger population standard deviation and smaller sample this is
not so.

For this example, all three values for mean, standard deviation, and sample size were entered using the
keyboard while the macro was running. It can usefully be altered for teaching purposes so that the teacher
has already specified the mean and the standard deviation in advance, and the students are then looking at a
real estimation problem.

The data used here were simulated observations taken from a normal distribution, but a simple alteration
to the macros would allow samples to be drawn from any population listed as a column in a worksheet. The
effects of sampling with and without replacement can be investigated. Note that the variance of the sample
mean is reduced when sampling is taken without replacement, being multiplied by a factor (N-n)/(N-1)for
a sample size n from a population of size N.
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Figure 16: Comparing sample mean distributions Figure 17: Comparing sampling methods

Stratified versus random samples

The effect of stratified sampling where a population consists of a number of identifiable groups (strata)
rather than one homogeneous group is to greatly increase the consistency of the estimator, by removing
one of the sources of variance (i.e., the differing number of observations from each strata). The macro used
here performs the following procedures: it generates sets of 40 observations from normal distributions with
means of 25, 30, 35, 40, and 45 each with a standard deviation of 5; it then repeatedly samples 4
observations from each set and also 20 observations from the full set of 200, in both cases without
replacement; as before, the sample means of each of these sets are computed and boxplots are drawn to
compare the consistency of the estimators. Figure 17 shows one outcome of this process.

The macro can be altered easily to work with real stratified populations, to accept parameter values for
each strata as inputs using the keyboard, or for the teacher to assign values for the strata parameters in
advance, placing greater emphasis again on the realities of interval estimation rather than point estimation.

These two investigations also give students some extra experience of using boxplots to make
comparisons between distributions.

CORRELATION COEFFICIENTS FOR SMALL SAMPLE SIZES

I find it fairly easy to justify to a class that the correlation coefficients for small datasets need to be high
before you can be reasonably confident that there is any underlying relationship, but much harder to
justify the distribution results listed in their sets of tables. Running a simulation generating sets of points,
under the bivariate normal hypothesis, and calculating the correlation coefficients, allowed us to build up a
sampling distribution, from which the origin of the critical values listed could be seen. Two examples of the
sampling distributions obtained are shown in Figures 18 and 19.
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Figure 18: Sampling distributions (n = 4) Figure 19: Sampling distributions (n = 8)

CONCLUSION

Much of probability and statistics requires a different type of thinking than mathematics, yet most of the
teaching at the secondary level is in mathematics. Also, these teacher often have no significant training in
the areas of probability and statistics. The earlier that students are shown the ways that data behave, rather
than learning the “mathematical rules” that govern certain aspects of that behavior, the more likely we are
to produce students who are genuinely at ease in dealing with uncertainty. I believe that the use of
technology and real datasets offer us greater possibilities of doing this well, but further research is needed
to determine the extent of the effect. Other papers in these proceedings (e.g., Lajoie, 1997) also argue that
datasets should be interesting and relevant to the students’ lives, which helps to motivate them and to show
how statistics is used to make everyday decisions on both major and minor issues.

Some specific questions for future research raised here include:

• Does the study of real datasets in the early formative years improve students’ ability to interpret formal
statistical results later on?

• Does the cooperative study and reporting of statistical investigations make students better suited to the
employment market than an undiluted diet of competitive, individual assessment?

• Does the use of simulations and the sort of sampling investigations described in this paper help students to
have a more accurate intuition of what is happening in other stochastical situations?
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