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14. STUDENTS' DIFFICULTIES IN PRACTICING
COMPUTER-SUPPORTED DATA ANALYSIS:

SOME HYPOTHETICAL GENERALIZATIONS FROM
RESULTS OF TWO EXPLORATORY STUDIES

Rolf Biehler
Universität Bielefeld

THE CONTEXT AND METHODOLOGY OF THE STUDIES

In this paper, I will report and summarize some preliminary results of two ongoing studies. The aim is to
identify problem areas and difficulties of students in elementary data analysis based on preliminary results from
the two ongoing studies.

The general idea of the two projects is similar. Students took a course in data analysis where they learned to
use a software tool, used the tool during the course, and worked on a data analysis project with this tool at the
end of the course. The course covered elementary data analysis tools, such as variables and variable types, box
plots, frequency tables and graphs, two-way frequency tables, summary measures (median, mean, quartiles,
interquartile range, range), scatterplots, and line plots. The grouping of data and the comparison of distributions
in the subgroups defined by a grouping variable was an important idea related to studying the dependence of
two variables. The methods for analyzing dependencies differed according to the type of variables: for example,
scatterplots were used in the case of two numerical variables, and two-way frequency tables and related
visualizations were used in the case of two categorical variables.

I have been interested in students' knowledge and competence in using the software tool for working on a
data analysis task. For this purpose, students were provided with data and given related tasks. The two studies
differed in their basic design. In the “Barriers project,” students were directly interviewed with regard to the
data with which they were familiar from the course and which they had used as basis for a class project. This
design allowed the researchers to focus on preconceived problem areas. In the "CoSta project," students were
allotted approximately one hour for working in pairs on the data and the task before interviewers entered and
discussed the results of their inquiry with them. This design provided more room for exploration of the data by
the student pairs. However, the subsequent discussion was very dependent on the students' results. In both
studies, the interviewers adopted a tutorial or teacher role to an extent that was not intended in the interviews'
original design.

The Barriers project is a collaborative project between C. Konold (University of Massachusetts, Amherst)
and H. Steinbring (University of Dortmund, Germany). The students involved were 12th graders at an American
high school who had completed a statistics course that used the software DataScope (Konold & Miller, 1994)
and was partly based on material with activities developed by Konold. The dataset contained more than 20
variables related to a questionnaire that was administered to approximately 120 students. The questionnaire
asked the students how they spend their time outside school, about their family, their attitudes, and so forth. The
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anonymous data contained responses from the students in this class as well as from other students in their
school. Students were interviewed at the end of the course about a project they had completed during the course,
as well as about other aspects of data analysis. During the interview, the students continued to work on the data.
The interviewer adopted a tutorial role by directing the students' focus and questioning their choice of method
and result interpretation. The students worked in pairs, and the process was videotaped and transcribed.

In the second project, "Cooperative statistical problem solving with computer support" (CoSta), I observed
student teachers who had attended my statistics course where the emphasis was on descriptive and exploratory
statistics. The software BMDP New System for Windows was used in the course. As part of the course
assessment, all students were required to complete an oral and written presentation. After the course, four pairs
of students volunteered for an extra session where they worked on a statistical problem. The dataset given to
these students concerned the number of traffic accidents in Germany in 1987. Frequencies were provided for
every day of the year, with differentiated information concerning the various street types and the type of
accident (with or without injured victims). The daily number of injured or killed was also provided. The entire
process--working on the task, presenting the results to the interviewers, the interview, and discussion--was
videotaped.

We are currently analyzing the interviews, video tapes, and transcripts from different perspectives, including
(1) the role of difficulties with elementary statistical concepts and displays, (2) the type of statistical problem
solving, and (3) how the students’ work is influenced by the computer as a thinking tool.

How the students’ work is influenced by the computer as a thinking tool can be analyzed by identifying
interface problems with the software, by observing how students cope with the weaknesses of the software, and
by analyzing how the computer influences their thinking and behavior in detail. The results with regard to the
software are interesting because they partly confirm but also partly contradict or add clarification to our current
understanding of requirements for software tools designed to support the learning and teaching in an
introductory statistics course (see Biehler, 1997). In this paper, I will not discuss results with regard to the third
perspective, but will instead concentrate on the first two perspectives (i.e., the role of difficulties with
elementary statistical concepts and displays and the type of statistical problem solving).

I will use some aspects of the videotaped episodes to demonstrate and argue for a basic problem; that is, the
intrinsic difficulties of "elementary" data analysis problems that we give students or that they choose to work
on. Analyzing what students do while at the same time reflecting on the possible solutions "experts" would
consider may bring us a step further to determining what we can reasonably expect from our students in
elementary data analysis and where we can expect to encounter critical barriers to understanding. The videos
from the Barriers project are currently being analyzed from other perspectives, such as from a psychological
point of view (Konold, Pollatsek, Well, & Gagnon, 1996) and from the perspective of an epistemologically-
oriented transcript analysis perspective (Steinbring, 1996). Preliminary joint discussions on the transcripts have
influenced the following analysis.

In the  analysis, I will mainly concentrate on one task and one part of a recorded interview (episode) from the
Barriers project. The generalizations I offer are also shaped by experiences and preliminary results from other
episodes and the CoSta project. I will identify 25 problem areas related to elementary data analysis. The "expert
view" on exploratory data analysis (EDA)and the task analysis are based on an analysis of important features of
EDA for school teaching (Biehler, 1992; Biehler & Steinbring, 1991; Biehler & Weber, 1995).
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CURFEW, STUDY TIME, AND GRADES IN SCHOOL: AN ANNOTATED EPISODE

The episode analyzed in this section is taken from two student pairs of the Barriers project. I shall
concentrate on one episode to provide examples for my analysis. The analysis compares elements from the work
of two student pairs and compares this to what we as "statistical experts" would have considered a "good"
solution to the problem. I try to identify "obstacles" that students encounter. The extent to which these obstacles
are generalizable and adequately explained is not known, although experiences and results of other studies have
contributed to shaping the formulation presented here.

One of the problems the students of the Barriers Project selected to investigate was "Does having a curfew
make you have better grades?" This formulation has a "causal flavor." The result of such an analysis may be
relevant to parents' decision making or for students who want to argue about curfew with their parents. As part
of their analysis, the variable hours of homework was grouped with the binary variable of having a curfew
(no/yes). The students compared the distributions under the two conditions with several graphs and numerical
summaries and found no "essential" difference. They combined their statistical analysis with common-sense
hypotheses about why curfews are imposed and the role curfews might play in academic achievements.

Defining the problem

The students' own formulation of this problem contains a "causal" wording (i.e., "make you"). It is not
atypical for students to be interested in causal dependencies and in concrete decision making (e.g., can we argue
against parents who want to impose a curfew?). Similarly, causal relations are present in the media where
(statistical) research studies are quoted that seemingly support such claims.

It is important to study how students conceptualize and define the problem they want to analyze, before they
use the computer to arrive at some (partial) answer. One student of the Barriers project  expressed a revealing
causal-deterministic chain of reasoning to support her interest in the curfew hypothesis:

"I mean if you had a curfew, would you study more, would you have more time to sit down and like actually have an

hour. Say okay, you have two hours and in those two hours, I just do my homework and nothing else and if you didn't

have a curfew, you have more liberty, so would do more as you please and less homework, less studying. So that's kind

of what I meant like. I, so what diff--I wanted to see what happened. So, if you studied more, did you have better grades,

if you studied less, did you have--you know like, I was assuming that if ...you had a curfew, you were doing more

studying, if you didn't have a curfew, you were doing less studying."

From the research question, the students derived a plan to compare the study time of those who have a
curfew with those who do not have a curfew. They expected that a difference in study time would support the
hypothesis that curfew has an "effect" on study time and vice versa. A statistical expert would know that such a
rush to conclusions is problematic in an analysis of observational data, because other possibly interfering
variables may also be relevant. A difference would point to indications, which would increase the evidence, but
definite conclusions cannot be drawn.

We can formulate the first problem area as:
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(1) Students seem to expect that results of analyzing observational data can directly be interpreted in causal terms.

However, results of a statistical analysis may be much weaker, especially if we analyze observational data. A reflection

on the status of expected results should be part of defining a problem and of interpreting results.

The way of conducting data analysis in the classroom may be partly responsible for this obstacle. If students
are given data analysis tasks with observational data the talk of "effects" of one variable on another one may be
nothing more than a façon de parler introduced by the teacher for group comparisons. It is likely that students
may interpret this as meaning "effect" in the causal sense if this is not discussed in the classroom.

The propositions stated by the female student (presented above) do not show any probabilistic or stochastic
elements; that is, there are no formulations such as "will tend to," "are more likely," or "in general." She may
have had something like that in mind, but used more common language for the sake of simplicity. Common
language does not support statistical reasoning as well as it supports deterministic reasoning. However, other
interviews show that students sometimes said "‘tend to’ do more homework.” A more elaborated way of
describing a possible relation is as follows: Study time is dependent on many factors, one of them could be
curfew. Imposing a curfew may have very different effects on the study time of different students, however.
Even if students think that imposing a curfew may increase the tendency to study and that this tendency would
reveal itself in a different distribution of study time in the curfew group, this would also be a superficial
conceptualization.

(2) Students use common language and the idea of linear causal chains acting on individual cases to make sense of the

situation. They do not use the idea of a multiplicity of influencing factors where an adequate design has to be chosen to

find out the effects of imposing a curfew. Why should a comparison of groups with and without curfew throw light on

this question at all? This critical question is not posed by the students.

It may be necessary to help students develop qualitative statistical-causal cognitive models (Biehler, 1995).
Mere data analysis may only provide superficial insights. What may be required in "upgrading" students'
cognitive models is a problem that has not yet been sufficiently analyzed.

In the next step, the students used the data to gather information in order to answer their question. The
students examined the data base that contained the two relevant variables: the binary variable curfew (yes/no)
and the variable HW: hours of homework, a numerical variable that contains an estimate of the number of hours
devoted to homework weekly. The students used several data analytical methods for studying "dependencies"
(e.g., scatterplots for two numerical variables or grouped box plots or frequency displays for studying the
dependence of a numerical variable on a categorial variable).

In this step, the students replaced studying the original complex question with studying the differences in the
distribution of HW grouped by the variable curfew. This replacement was probably not a conscious refinement
and reduction but rather may have been suggested by the situational constraints of the experiment. The situation
reduced the problem space in several ways: (1) students used the data given instead of thinking what data they
would like to collect to answer their question, and they did not notice the limitations of the observational data
for their causal question; (2) students searched the available variables in the data base for a match with their
verbally-formulated question (actually, the question was chosen with regard to the variables available); the
process of transforming words into statistical variables was cut short; and (3) nobody questioned whether a
statistical analysis was reasonable at all. Other methods such as interviewing parents or students may be better
methods. Teachers and students should be aware of the limitations of using statistical methods. If we apply
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qualitative interpretative methods in our educational research we should also be especially aware of these
alternatives when we teach statistics to our students. Moreover, global differences between student groups with
and without curfews may not matter to parents who have to decide whether to impose a curfew for their child
under very specific circumstances.

The replacement of the subject matter question by a statistical question remained partly unnoticed and
became a source of misunderstandings between the interviewer and the students. This indicates a general
obstacle that is raised in the classroom, too: whereas the teacher may be thinking in terms of variables and
statistical relations, the students may use the same words, such as "curfew," without thinking in terms of a
"binary variable." Obviously, an operationalization of the verbal formulation of "having a curfew" could be
different from a yes/no definition. Weekend or nonweekend curfews could be distinguished, or we could take
into account the time when students have to be at home. In teaching mathematical modeling, we frequently
emphasize the importance of distinguishing between the real world situation/problem and the mathematical
model/problem. This clarification may also help in the statistical context. The scheme shown in Figure 1
illuminates necessary transformations between the stages and the necessity to evaluate results in the light of the
original problem. The system of variables collected in the data base is comparable to a reduced idealized model
of a real situation.

Real problem

Statistical problem Results of 
statistical analysis

Interpretation of
results

Figure 1: Cycle of solving real problems with statistics

(3) Genuine statistical problem solving takes into account and deals with the differences and transformations between a

subject matter problem and a statistical problem and between the results of a statistical analysis and their interpretation

and validation in the subject matter context. When these differences are ignored, misunderstandings and inadequate

solutions become likely.

I have already argued that the situational constraints of a task given to students may not be optimal for
promoting a development of metacognitive awareness of this difference (i.e., the difference between a real
problem and a statistical problem). These limitations are reduced when students are involved in the entire
process of defining (constructing) variables and collecting data (Hancock, Kaput, & Goldsmith, 1992). How to
cope with this problem when students are only asked for an analysis of available data is currently unknown.
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The above problem is not limited to educational situations. For instance, Hornung (1977) admonished
analysts to distinguish between experimental and statistical hypotheses and between the level of the statistical
result (significance) and what this may say about the original real problem. It often remains unclear whether
"rejecting a hypothesis" is a proposition on the level of the statistical problem or on the level of the real
problem. More generally, we find a widespread simplistic view about the relation of formal mathematical
(statistical) methods to subject matter problems (see Wille, 1995, for a critique). Some people think that formal
mathematical methods can completely replace subject matter methods; however, frequently formal
mathematical methods only deserve the status of a "decision support system." At one extreme, we find people in
practice who use statistical methods for solving real problems as if they were solving artificial textbook
problems in the classroom. However, the relation between subject matter knowledge and statistics is a difficult
problem. Different traditions in statistics, such as the Neyman-Pearson school versus the tradition of EDA,
differ with regard to this problem; for example, EDA allows context input in a more extensive flexible way
(Biehler, 1982).

Producing statistical results

During the interview segment, all the displays and tables the software DataScope offers for comparing the
yes and no curfew groups were produced; that is, frequency tables, histograms (referred to as bar graphs in this
program), box plots, and a table with numerical summaries (these were all grouped by the variable curfew). Our
interview and video documents show that the process of selecting the first method or display and of choosing
further methods and displays varies among students--some superficially trying out everything, others making
reflective choices on the basis of knowledge and insight they had acquired. Most often though, students seemed
to jump directly to particular methods offered by the software tool (means, box plots) without much reflection.
The research problem here is the reconstruction of different patterns of software use in the context of a data
analysis problem. Two basic problems can be summarized as follows:

(4) Superficially experimenting with given statistical methods is a first step. But how can we improve the degree of

networking in the cognitive repertoire of statistical methods? In particular, students have to overcome the belief that

using one method or graph "is enough.”

(5) Software tools with ready-made methods influence the way a subject matter problem is conceived of and is

transformed into a "statistical problem" and into a "problem for the software.” This phenomenon can be exploited for

developing students’ thinking. However, later it is also necessary to reflect on these limitations and transcend the

constraints of the tool. How can we achieve this step?

Let us think about what a good model of use would be. What would (or should) an "expert" do? The expert
will conceptualize or classify our problem as "comparing distributions." For this purpose, several comparison
tools are cognitively available: box plots, frequency bar graphs with various resolutions, numerical summaries,
one-dimensional scatterplots (and probably other displays such as cumulative frequency plots or QQ-plots, as
well as tools from inferential statistics). An expert will have knowledge and experience about the relation of
these tools, especially about their relative virtues and limitations. Generally, an expert will know to experiment
with several tools because each tool shows different aspects of the data or aspects of the data in different
perspectives. Using only one tool will be not sufficient.
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Experts operate within a networked cognitive tool system and recognize the model character of a tool or
display. For instance, experts will know that several outliers with the same value will be shown in a box plot as
only one point and that box plots cannot directly show big gaps in the main part of the data. An expert would
also be aware of the differences of his/her cognitive statistical tool system and the tool system that a concrete
software tool offers. For example, an expert may think that a jitter plot would be the best display for a certain
distribution. If this were not available, an expert would use a combination of box plot, histogram, and dot plot or
generate a jitter plot by using the random number generator together with the scatterplot command. An expert
would also be aware that there may be differences in defining a certain concept or procedure in statistics in
general and in a software tool in particular [e.g., the various definitions and algorithms for quartiles that are in
use (Freund & Perles, 1987)]. Basically, we have to be aware of the subcycle shown in Figure 2.

Statistical 
problem

Problem for the
software

Results of 
software use

Interpretation of
results in 
statistics

Figure 2: Subcycle of computer-supported statistical problem solving

Experts would probably conceptualize the situation as "comparing distributions," reflecting their cognitive
tool system, and then use the computer-based tool system in a reflective way (i.e., they would understand when
the computer tools are not adequate and understand the possible distortions and changes when progressing from
a real problem to a statistical problem to a computer software problem). In contrast, we can often reconstruct in
our students a direct jump from a real problem to a problem for the software without an awareness of possible
changes. Again, students are sometimes satisfied with producing computer results that are neither interpreted in
statistical nor subject matter terms. Such a degenerate use of software for problem solving, where it only counts
that the computer "does it," has also been reconstructed in other contexts (Krummheuer, 1988).

The degree of networking in some students' cognitive tool system seems to be rather low, otherwise the trial
and error choice of methods that we observed quite frequently would be difficult to explain. Moreover, some
students seem to look for one best display, when more than one display may be required.

Sometimes we can reconstruct episodes that show that students feel the need for a display not available in the
software; that is, they try to transcend the system of available computer-implemented tools. Students express
such needs fairly vaguely, probably because they have no command of a language necessary to express the
design of new graphs. This could be due to the habit of teaching them the use of only those graphs that are
already computer implemented, without sharing with the students why and how these specific graphs have come
to be constructed.
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Interpreting results

A characteristic feature of exploratory data analysis is the multiplicity of results.

(6) Students have to overcome the obstacle that a data analysis problem has a unique result. However, it is difficult to

cope with the multiplicity of results even at an elementary level.

Even if we compare two distributions, we can use various displays and numerical summaries, there may be
contradictions, and students have to relate the various results and make some kind of synthesis. The term "data
synthesis" was introduced by Jambu (1991) to emphasize that a new phase of work begins after the production
of a multitude of results. However, even a single display such as the box plot contains an inherent multiplicity:
It allows the comparison of distributions by median, quartiles, minimum, maximum, quartile range, and range.
The selection and synthesis of these various aspects is not an easy task for students. An even simpler example of
dealing with multiplicity is when comparing distributions by using means and medians--Should we choose one
of them? Are both measures relevant? How can we understand differences if they occur? These questions are
difficult for students (and teachers).

The difficulties that writing statistical reports pose to students are well-known; however, it is not only the
limited verbal ability of high school students that is responsible for these problems. Not only superficial reading
or writing will lead to distorted or wrong results. Our documents suggest that the description and interpretation
of statistical graphs and other results is also a difficult problem for interviewers and teachers. We must be more
careful in developing a language for this purpose and becoming aware of the difficulties inherent in relating
different systems of representation. Often, diagrams involve expressing relations of relations between numbers.
An adequate verbalization is difficult to achieve and the precise wording of it is often critical.

(7) There are profound problems to overcome in interpreting and verbally describing statistical graphs and tables that

are related to the limited expressability of complex quantitative relations by means of common language.

I now return to our interview to show some interpretation problems with elementary graphs. In the course of
one interview in the Barriers project, the students produced a frequency bar graph (see Figure 3), but did not
find it very revealing ("It is confusing").

Some students even had difficulty "reading off" basic information. The histogram for continuous variables in
Figure 3 has an underlying display scheme that is different from the categorial frequency bar chart. In the
histogram, the borders of the classes are marked, whereas in the categorial bar chart the category name (which
could be a number) is shown in the middle below the bar. It seems that some of the students interpreted the
above graph with this "categorial frequency bar chart" scheme in mind. For example, the “5” under a bar was
interpreted in the sense that there are only data with the value “5” in the bar. Bars with nothing written below
were difficult to interpret. There was a similar confusion of graphical construction schemes with regard to box
plots. We may conclude that, independent of the newly taught schemes, students attempt to make sense of
graphs by using graph construction schemes from other contexts. Thus, the notion that we must be more careful
in our instruction of distinguishing among different types of axis in elementary graphs is reinforced. The
software Tabletop (Hancock, 1995) offers a carefully designed possibility here for changing among different
types of axis that may be very helpful for beginners.
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n=50

n=100

yes

Figure 3: Histograms with absolute frequencies of HW (in hours)

However, not only the high school students had problems here. Most of the student teachers in the CoSta
project felt more "uncomfortable" with the continuous variable histogram than with the categorial frequency bar
chart. The student teachers had various difficulties related to the relation between relative and absolute
frequencies, and the various resolutions when changing the interval length of the grouping system. It could be a
good didactical idea to distinguish "maximum resolution bar graphs" that show the entire raw dataset from
"histograms" that are based on grouping the data and are thus only a summary of the data.

The fact that the computer hid the grouping of the data from the user could be hypothesized as a source of
difficulty. The histogram is a very simple case from the expert's view. However, the problem that users of a
mathematical tool forget the "meaning" of a certain display or method is a general one.

(8) Students tend to forget the meaning of statistical graphs and procedures, and, often, the software tool does not

support them in reconstructing this meaning.

Thus, perhaps the software we use needs to be improved: Some possibilities include adding hypertext
explanations including prototypical uses and pitfalls for every graph or method, offering related linked methods
(e.g., showing what is inside a histogram bar by clicking on it), highlighting the data of one bar in other displays
or tables, or suggesting "related methods" to be combined with the histogram. We must, however, improve
teaching and resist the temptation to take implemented statistical algorithms and displays "as given" in the
machine, forgetting that students have to construct the meaning of the methods in their minds.

Students produced a box plot display of HW grouped by curfew (see Figure 4).
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Figure 4: Boxplots of HW (weekly hours) with and without curfew (same data as in Figure 3)

In this case, it was the interviewer's initiative combined with the easy availability of the box plot in the
software that was largely responsible for choosing this display. Ideally, we want our students to know that one
of the reasons the box plot was developed was that comparing frequency bar graphs can often be "confusing,"
especially if we have more than two bar graphs (see Biehler, 1982). Thus, it may be helpful to emphasize that
the invention of the box plot was a solution to a problem.

(9) Students do not seem to appreciate that statistical methods and displays were constructed for solving a certain

purpose.

Some of the students needed help in reconstructing which numerical summaries are displayed in the box plot
and how they are defined. The different graphical conventions, namely that area and lines were both used to
indicate the location of data and that area is not proportional to the amount of data, were a source of confusion.

(10) The graphical conventions underlying the definition of the box plot are very different from conventions in other

statistical displays. This can become an obstacle for students. Moreover, a conceptual interpretation of the box plot

requires at least an intuitive conception of varying "density" of data. This is a concept that often is not taught together

with box plots.

After the interviewer clarified what the basic elements of the box plot represent, students faced further
difficulties in interpreting the box plots shown in Figure 4. The dominant feature is that the box plots are the
same with the following exceptions: the lower quartile is one hour less in the no group than in the yes group.
There are two outliers in each group (maybe more, overplotting!). The end of the right whisker (signifying the
maximum of the data without outliers) is one hour higher in the no group. The box as the visually dominant
feature in the display conveys the impression that the spread (interquartile range) in the no group is higher than
in the yes group. Which of the differences are relevant for the question of effects of having a curfew? This
question was discussed by the students and the interviewer.

The students regarded the difference in the outliers to be irrelevant for the comparison ("Just because one
studies 27 hours, the rest could study only 1 or 2 hours"). An expert would agree. But one student also rejected
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the difference in the lower quartile as relevant, because it ignores "the rest of the data." The equality of the
median is accepted as an indication of no difference. Why? "Because, by average. You know on average, people
studied 5 hours on both, with a curfew or without a curfew. So that would kind of be the median. That's right,
yeah. Or, if you look at the mean..." (Note that the means are 6.44 hours for no curfew and 6.995 hours for
curfew.) Reacting to the question of whether the mean uses all the data for comparison, one student said:
"You're not using all the data but you're looking kind of averaging out, you know like looking at the average
time that people spend studying, so you're using the whole data because you got to find one average."

We can see the interesting point that "comparison by average" seems to be a basic acceptable choice for the
students; intuitive conceptions like averaging out seem to play a role in this. It would be interesting to explore
this further. The students were asked to comment on mean or median but only referred to the mean; thus, we
suspect that they may have less confidence in using medians for comparison. This observation was also made
with the CoSta students. Moreover, the possibility that box plots offer--the simultaneous comparison according
to different criteria--is not really used and accepted by the students as a part of their tool system.

(11) Establishing the box plot as a standard tool for comparing distributions is likely to conflict with "acceptable

everyday heuristics" of comparing distributions or groups by arithmetic means (averages).

 A SUPPLEMENTARY TASK ANALYSIS OF THE CURFEW EPISODE
FROM AN "EXPERT" PERSPECTIVE

In this section, the inherent difficulties and obstacles in the above problem will be analyzed further. This
complexity must be taken into account when designing problems and assessing students' performance and their
cognitive problems.

Median or mean

In the above example, we observed no difference in the medians but a difference in the means. Can we come
to a definite decision? Which difference is more relevant?

It may be helpful to know something about the relation of the two summaries. Why (in terms of the numbers)
are the means higher than the medians? It is difficult for students to understand relations between means and
medians, especially because no clear theory exists. An expert might see in this situation that the difference in
lower quartiles may "numerically explain" the difference of the means as compared to the medians, if we use the
metaphor that the mean is the center of gravity of the distribution. Imagine shifting the data below the median in
the upper display to the right (about 1 hour). This will produce something similar to the lower display and at the
same time result in a shift of the mean to the right (of half an hour). Obviously, this requires thinking on a very
abstract mathematical level--experts are able to change data and shift distributions conceptually in their minds.
This does not correspond to any real action--we do not have the same objects in the two displays (with two
different variables), but rather two different groups. My point is that successfully comparing distributions may
require fairly abstract thinking in terms of mathematical distributions as entities. However, we know that
working with functions as entities is difficult for students (Sfard, 1992). And this difficulty comes into play
when students are supposed to effectively compare data distributions. The problem of distributions as entities
will be discussed below, because it is also relevant for other respects of statistical reasoning.
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(12) Choosing among various summaries in a concrete context requires knowledge of relations between distributional

form and summaries, and of a functional interpretation of summaries (how they will be affected by various changes).

Thinking about summaries only with regard to their value in empirical data distributions and not as properties of

distributions as abstract entities may become an obstacle in data analytical practice.

This difficulty may not be surprising because data distributions are usually not characterized as concepts in
courses of elementary data analysis. Distributions are emphasized in probability theory but in an entirely
different context that students find difficult to apply to data analysis.

Interpreting box plots

How might experts exploit the information provided in the box plots? The diagnosis that the interquartile
spread is higher in the no group than in the yes group seems to not be directly interpretable. For the box plots
shown in Figure 4, we could argue as follows. Under both conditions, we have a median of 5 and an upper
quartile of 10. The distribution beyond the upper quartile looks similar. The distributions look fairly the same
above the median (according to the box plots). But among those who do relatively little homework, namely
among those less than or equal to 5 hours, we find a real difference: The median of weekly work of those with a
curfew is one hour more than without a curfew. In other words, if we constrain the analysis to the lower halves,
the median homework time is 50% higher among those who have a curfew. In this reasoning, we have
interpreted the lower quartile as the median of the lower half of the data.

We could consider a practical recommendation. Parents should consider imposing a curfew on those students
who do not (yet) work more than 5 hours. This practical conclusion is not completely supported by the data
because we have not strictly proved a causal influence of curfew on study time. But the conclusion is certainly
plausible. We will return to the weaknesses of this conclusion below. Let us reflect on the difficulties of the
interpretations of multiple box plots first.

(13) Even with the relatively elementary box plots, students will encounter a variety of unforeseen patterns in graphs in

open data analysis tasks. Interpretation often tends to be difficult, may depend on the specific context, and may require

substantial time before a satisfactory interpretation is achieved. Often, graphs will be confusing even to experts. The

search for interpretable patterns is natural but may not be successful, because they may not exist. The fact that many

textbooks present easily interpretable box plots (or graphs in general) may serve to mislead students to expect that all

plots are easy to interpret.

A well-selected set of examples for group comparison with box plots that includes examples in which no
satisfactory interpretation is available would be helpful for teaching purposes. This would be similar to what
Behrens (1996) suggests as a data gallery.

Although we have to face the above general problem in elementary data analysis, there are some specific
problems with box plots. In the CoSta project, we have observed that students tend to notice differences in the
medians first and do not pay enough attention to differences in spread. Interpreting differences in spread is a
general problem. There are prototypical situations with good interpretations of spread differences; for example,
two different measurement devices where spread measures the "accuracy" of the instrument. In other cases, the
larger variability of an external variable may explain the larger spread of the variable in question. In the CoSta
data, for example, the seasonal variation of the amount of traffic on weekends is higher than the seasonal
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variation within the week because there is additional traffic on weekends in spring and summer. However, there
are other cases where difference in spread is not easily interpretable.

An additional problem is that the box plot represents at least three global measures of spread: range,
difference between the whisker ends (range without outliers), and interquartile range. Students can report all
three, but how do they handle the different conclusions these may support? Also, the expert knows that a
difference of one hour in the interquartile range has to be taken more seriously than the difference of one or two
hours in the range or whisker differences, except for very small sample sizes. The resistance, robustness, or
"reliability" of summaries is an issue here. This is relevant not only when we think in terms of random variation
in a sample, but also when we take into account that there may be individual inaccuracies or errors in the data.
Obviously, this is open to interpretation, but what can students reasonably learn about this?

(14) Interpretations of summary statistics such as those represented in a box plot must take into account their different

"reliability" and "robustness.” Sample size is important even when the data do not come from a random sample.

Students generally lack the flexible knowledge and critical awareness of experts, which guides their behavior in such

situations.

A well-known advantage of the box plot is that it displays not only a global measure of spread, such as the
interquartile range, but a measure of spread left and right of center. In other words, skewness can be recognized.
This advantage may not be clear to students who may have learned the box plot as a standard display without
having been confronted with the problem of "how to measure spread." Skewness and symmetry are better
defined in the ideal world of mathematical distribution curves than in graphs of actual data. Experts see
structures and relations in real graphs as "symmetrical distribution plus irregular variation," but novices exposed
only to more complex but real data graphs will be unable to "see" this. Although we do not know enough about
what students and experts "see" in graphs, the following problem can be formulated.

(15) Box plots can be used to see "properties of distributions" such as symmetry and skewness that cannot be well-

defined in empirical distributions. Moreover, the concepts of symmetry and skewness are related to a classification of

distribution types--the rationale of which is difficult to teach in elementary data analysis. For instance, experts will

probably expect skew distributions for the variable homework, although this expectation would not be easily

explainable.

Questioning the basis of decision making

Would an expert be satisfied with the analysis and recommendation to parents sketched above? What kind of
refinements with regard to the subject matter problem could be considered?

To broaden the analysis, we should check other graphs and numerical summaries to see whether we might
arrive at a somewhat different conclusion. Conclusions should not be based on a single display, because any one
display may conceal important features.

(16) Conclusions depend on the statistical methods and displays that have been considered. Experts, aware of the

limitations inherent in many summaries and the hermeneutic circle in data interpretation, consider alternative
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approaches. Students whose experience has consisted of well-defined textbook problems in a methods-oriented statistics

course will not be prepared to appreciate this problem.

The observational difference between the no/yes groups is not enough to support the claim of a causal
influence. We should also explore how the with and without curfew groups differ on other variables. Experts
would want to exclude the possibility that these other variables could explain the difference in study time.

There could be common variables such as age that could influence both our variables: for example, older
students may tend to study less and are less likely to have curfews or parents' attitude towards education may
induce them to impose curfews and find other ways to motivate studying. In other words, the elimination of
curfews may not result in diminished study time, because the general attitudes of the parents would not change.
This latter kind of thinking is far from being common sense; it is explicitly emphasized in statistics textbooks
because it is known that people tend to misinterpret data. Historically, statisticians have tried to control for third
variables by checking whether a certain effect is true for all levels of the third variable. Generally, our
conclusion has to be considered as an uncertain hypothesis that has to be tested by further experiments and data.

(17) Studying dependencies and possible "effects" in observational data is part of the agenda in elementary data analysis

courses--but how do we cope with the problem of "lurking variables"?

Any recommendation to parents should be offered with some reservations; that is, we cannot be certain that
imposing a curfew alone will have an effect. Sophisticated parents may say that an average increase is not
relevant, because they are interested in an increase of study time of their own child, and there may be very
specific conditions that they have to take into account. This raises the general problem that statistical effects
determined on groups may not be relevant for individual cases. Collective rationality and individual rationality
may clash.

A reasonable abstract model could be: cause -> intermediate variables -> resulting change, where the
value of the intermediate variables determine how the cause affects the result. Even if having a curfew would
have no "statistical effect," parents could argue that in the case of their child they have evidence that dropping a
curfew would have a negative effect. They could base their argument on their experience with their child in
similar situations. Intuitively, parents may feel that a certain change (dropping a curfew) may have different
effects on different persons so that the statistical argument is irrelevant.

(18) Statistics establish propositions about differences between "groups.” The relevance of group differences to

evaluating individual cases is often not clear. If students are not able to distinguish between the group and individual

level, they may run into problems when trying to interpret results. Statistical results and common sense judgments may

become difficult to relate and integrate.

(19) Students have difficulties in relating abstract models of linear statistical-causal chains to studying frequency

distributions under various conditions. Students conduct the data analysis study as they have learned in the classroom,

but the classroom learning has not (yet) upgraded their cognitive statistical-causal modeling capability.
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Coordinating frequency bar graphs and box plots

How do our conclusions depend on the chosen methods? We may follow up this question by examining
frequency bar graphs to examine further the structure suggested by the box plots. In order to examine the
frequence bar graphs, we must convert from absolute frequencies (used in Figure 3) to relative frequencies.

Figure 5: Histograms with relative frequencies of HW (in hours)
 [interval width: 2.5 hours (width different from Figure 3, but same data)]

Figure 5 makes the shift below “5” more visible than Figure 3. Note that changing to relative frequencies and
changing the interval width from 2 hours in Figure 3 to 2.5 hours in Figure 5 is why the shift is more visible.
Figure 6 shows the bar graph when the interval width is changed to 5. Students must realize that two adjacent
bars have been "combined" to get the bars in Figure 6. An expert might see in Figure 6 two different "curves"
where the decrease is more rapid in the no group. A maximum resolution bar graph (not shown here) would
show an additional feature: the numbers 5, 10, 15, and 20 are very popular, which is a typical phenomenon
when people are asked to estimate. However, box plots do not show this; thus, students should be made aware
of this additional advantage of using a histogram.
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Figure 6: Histograms with relative frequencies of HW (in hours)
 [interval width: 5 hours (width different from Figures 3 and 5, but same data)]

Cumulative frequency diagrams are an intermediate display type that support establishing relations between
histograms and box plots. The cumulative plot is not dependent on class interval size. However, the software
DataScope does not offer such plots.

The coordination of box plots and frequency diagrams is difficult for three reasons. First, students and
teachers typically describe box plots in rather imprecise language. For example, one person commented: "About
50% of the data are lying between the lower and the upper quartile, about 25 % are lying between the lower
quartile and the median etc." There are two problems in this statement: what is meant by "between" (including
or excluding the borders of the interval) and "about." The problem is less serious when we have no ties
(duplicated values) in the data. Rubin and Rosebery (1990) offer an example where ties in the data caused a
problem of understanding the median. To illustrate a source of this confusion, Table 1 shows the percentages of
data that are above, equal to, and below the median value of “5” hours for the two groups of students (who do
and do not have curfews).

 The arguments presented earlier regarding these two group of students were based on using box plots and
the assumption that approximately half the data are below the median value of 5 in both groups. We would have
to refine it on the basis of  Figures 5 and 6 and Table 1. The matter becomes even more complicated when we
consider that there are several reasonable definitions of quartiles and in addition, different software programs
use different definitions of quartiles in calculating these values. Sometimes there are different definitions for
quartiles in the same program--one for graphs and another for numerical summary tables.
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Table 1: Percentages of Homework Hours below and above the median (5 hours)

Interval “No ” Group “Yes” Group

< median 48 40

= median 20 13

> median 32 47

(20) The way teachers and students casually talk about box plots may come into conflict with frequency

information that students read from histograms.

The second problem of coordinating box plots and frequency bar graphs is conceptually quite difficult. The
definition of box plots is based on quartiles which are based on percentiles. This requires that students think in
terms of fixed frequencies that are spread over a certain range. The reasoning needed for the bar graph is the
inverse. For the box plot in Figure 4, students (and teachers) sometimes said "About 25 % of the data are
between 2 and 5 hours." (They looked at the range between the lower quartile and the median.) In common
language, this statement would be interpreted as “if we look to the interval between 2 and 5 hours, we find a
frequency of 25%.” However, the meaning of the students' proposition is really stronger--it is a proposition of
the location of the "second 25%" of the data, a very specific subset of the data that covers about 25%. In a
cumulative (maximum resolution) frequency plot, it is possible to coordinate both perspectives; that is, starting
from the frequency axis or starting from the value (quartile) axis. It is unknown whether introducing such an
intermediate plot may help to link box plots and frequency bar graphs in students' minds. In any case, this
intermediate cumulative plot requires thinking in terms of functions and their inverses, which are usually not
easily understood.

(21) The reasoning between "frequency "and "range for this frequency" in the case of the box plot is inverse to the

corresponding reasoning with regard to histograms. This conceptual difficulty is exacerbated because it is difficult in

common language to express the two different numerical aspects of a proposition such as "the frequency between 5 and

7 is 30%."

The third problem concerns how to talk about multiple box plots. The median and quartiles are concepts that
are defined with regard to frequencies. However, it is often of no use to repeat these definitions when describing
multiple box plots (i.e. just redescribing differences in other terms). Students must reach a stage where they
begin to use median and quartiles as conceptual tools for describing and comparing distributions without always
going back to their definitions. That seems to be very difficult to achieve. New concepts are required to describe
differences and relations in multiple box plots. For example, when exploring the box plots that contained the
traffic data in the CoSta project, students began to characterize the development of the monthly median or
spread as a function dependent on time (as measured by the month of the year).

(22) Comparing multiple graphs such as box plots or histograms requires coordinated use of the defining concepts as

well as the development of new concepts that are specifically adapted to the comparison of distributions.
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SOME FURTHER PROBLEMS AND TASKS FOR RESEARCH

In this section, I will briefly describe additional problems that we have encountered that I prefer not to
integrate into the presentation of the curfew problem.

The varying accuracy of numbers

"The mathematical and the statistical number--two worlds" is the title of a chapter in Wagemann's (1935)
book on a "statistical world view." He points to the different properties of exact mathematical numbers and
empirical numbers (results of measurements) in statistics. When we use an equality sign, we most often mean
only approximate equality in statistics. We have to judge how many digits of the decimal numbers of the raw
data are meaningful. It is more difficult to decide the number of significant digits for derived statistics. Experts
often have metaknowledge with regard to what accuracy would be considered reasonable and reliable. Students
encounter this problem in many disguises and forms, and this is especially true in descriptive statistics. Some
examples will be provided here.

The shape of frequency distributions

 Students report that a frequency distribution has five peaks so that it must be considered multimodal.
Experts, however, would take into account that the number of peaks depends on the interval size and may
diagnose an overall unimodality plus "randomness" in the first attempt. This problem is well-known, and some
statisticians question the use of histograms and have more refined tools for diagnosing peaks. Density traces
often assume some probabilistic background that is (not yet) part of the students' world view. Students may
cognitively structure a histogram as a smooth curve plus irregular variation. However, we do not yet know
enough about what students see in histograms nor what kind of orientation we should teach students. The
problem turns even more serious when students have to compare distributions using frequency diagrams
(histograms). Questions such as "When are distributions practically the same, when are there "essential"
differences?" are difficult to answer. Note that the students encountered this when working on the curfew
problem and were confused.

The comparison of summaries

 In one of the interviews for the Barriers project, students had to compare average grades. Grades of the
students were measured as A, AB and so forth, and then coded as numbers 1, 2, 3. Two groups had average
grades of 6.61 and 6.85. The students argued that decimal grades are meaningless and rounded both values to 7.
Thus, the conclusion was that no real difference exists between the groups. This example has several inherent
difficulties, one of which is whether we should calculate means of ordinal variables. However, the problem can
be observed for quantitative variables as well. For example, it generally does matter whether there are on
average 10.1 or 10.3 accidents per hour in a certain region. The basic problem is that summary values like the
mean and median have a "scale" that is different from the "scale" of the original values (and total range has a
different "scale" than interquartile range). A subsequent problem is what differences are really significant for a
certain subject matter perspective or problem--there is no general answer. Statisticians may point to the problem
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of statistical significance; however, this does not solve the problem of evaluating subject matter significance. As
became evident from the curfew problem presented above, it is extremely difficult for students to judge the
different potential variability of different statistical measures.

A further problem arises from the fact that most numbers in statistics are measurements, and often they are
estimations. In interpretation tasks, one has to take into account the reliability, validity, and accuracy of these
measurements (e.g., we observed several multiples of five in the estimates given by students regarding the
number of hours they spent on homework).

(23) Statistics is concerned with empirical numbers. The question of how many digits should be taken seriously depends

on the context. Metaknowledge is necessary for guiding data analysts. However, the orientation towards exact numbers

in traditional mathematics instruction may become an obstacle for adequate behavior in statistical applications.

Visualizations of data: how and why?

Elementary graphs are more complex for students than we had expected. Difficulties may arise because of
different (contradictory) conventions between discrete and continuous frequency bar graphs, and because of
differences between the principles underlying box plots and histograms (frequency is not always represented by
area or length). These difficulties multiply if different computer programs are used and there is a discrepancy
between the conventions used in teaching and those in the software.

These problems will grow in a computer-supported course if not enough time is devoted to the principles on
which the construction of a new method is based and on the reasons for a new display format: Which problems
can we solve better now that we have the histogram/the box plot? The existence of ready-made methods in
software may increase the temptation to just "give" students the methods, without creating a "need" for new
methods and without having considered possible alternatives.

Historical information could be of help here. Tukey (1977) provides a careful introduction to the box plot.
He considers box plots as a "quick and easy" first step "standard summary" of data. According to Tukey,
looking at box plots may provide clues and inspire the need for additional displays. For instance, one may wish
to concentrate on a display of only the medians or the quartile range, or one may wish to see the original data
behind the box and the whiskers in a one-dimensional scatterplot. Contrary to this flexible use, methods such as
the box plot have already become codified, and often teachers do not take enough time or have enough
awareness of the problem to help students to see the box plot from this wider perspective. Moreover, even many
professional tools do not easily support such a flexible approach by providing the box plot in the context of
other related methods.

Making the principles of graph construction and data visualization topical could also be valuable as a general
orientation: We have frequently observed students looking around in messy tabular data without getting the
basic idea that plotting may help to see more structure.

(24) If students have only learned a number of specific graphs, they may run into difficulties in various situations where

more general knowledge of principles of good statistical graph construction is required.
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A conceptual orientation for interpreting and using graphs and tables

The habit of careful and thorough reading and interpreting of statistical displays is difficult to develop. We
know from other statistics teachers that students tend to produce much uninterpreted output, and that the
possibility of using a variety of graph types may distract them from concentrating on interpreting one display.
We also know that it is difficult to write a report; that is, to produce written or oral descriptions and
interpretations of graphs. Our transcripts suggest that verbalizing structure in graphs is a problem, not only for
the students but for the interviewers and teachers as well. Quantitative relations are complex and cannot be
paraphrased in common language adequately without graphical means and symbolic notation. Often, the
verbalization is only a summary and, thus, a partial distortion.

A deeper problem is to understand, reconstruct, and influence the conceptual means, or the cognitive
structure, that students bring to a graph or table. There are a number of studies related to the interpretation of
line graphs of empirical data and of function graphs (see Romberg, Fennema, & Carpenter, 1993). Many
concepts are required for describing and interpreting aspects of graphs such as changing slope, local minimum
and maximum, and so forth. Also, recognizing shapes and classifying functional relationships is an important
orientation. To interpret a line graph with data, students may need to switch between seeing the graph as a
collection of points and as a representation of a function. We encounter similar problems in other statistical
graphs. However, the varying accuracy of numbers problem  adds a problem. A simple example for this problem
is as follows: We can potentially see many different structures in a scatterplot, and we can cognitively fit
multiple functions that will pass "near" the data points. This kind of statistical ambiguity is not present in the
realm of graphs of empirical and mathematical functions as they are analyzed in the above quoted research.

We can illustrate the necessity of conceptual orientation with two-way tables. The software DataScope that
the students in the Barriers project used has the capability to display a frequency table of a categorical variable
grouped by another categorical variable, which results in a cross-tabulation with absolute and relative
frequencies. The students interviewed here analyzed the data table with regard to individual values and their
comparisons. In such a table, an expert would see marginal distributions and two types of conditional
distributions (row and column percentages) and would compare the rows or columns (which will be independent
when the conditional distributions are the same). In statistics, concepts such as "input flow view" and "output
flow view" have been developed for distinguishing the two views of the two-way table. The problem is related
to the well-known problem of confusing two different conditional probabilities; for example, P (test positive ⁄
man ill)and P (man ill ⁄ test positive). Experts have developed a rich conceptual structure for an analysis of such
tables.

The student teachers in the CoSta project had better conditions than the students in the Barriers project in
that much more time was devoted to the above conceptual prerequisites and the software BMDP New System
provided more flexibility than DataScope in swapping the variables in a two-way table, collapsing categories
for getting a better overview over the structure, and switching between displaying the two different conditional
distributions (row and column percentages) and the unconditional frequency distribution. The preliminary
results of the CoSta project shows, however, that it was also extremely difficult for these students to think in
terms of entire distributions (as objects) and to interpret entire rows and columns as representing conditional
distributions.
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(25) Interpretation of graphs and tables that are more than a mere reading off of coded information requires a rich

conceptual repertoire.

Perspectives

We hope that the further analysis of our documents will contribute to a reshaping and sharpening of the 25
problem areas that I have defined above. A further clarification and identification of adequate didactical
provisions for overcoming these difficulties or for redefining goals for teaching elementary data analysis is a
task for future research and development projects.
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