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March brings March Madness, the annual conclusion to the U.S. men’s college basketball
season with two single elimination basketball tournaments showcasing the best college

teams in the country. Almost as mad is the plethora of office pools across the country where
the object is to pick a priori as many game winners as possible in the tournament. More
generally, the object in an office pool is to maximize total pool points, where different points
are awarded for different correct winning predictions. We consider the structure of single
elimination tournaments, and show how to efficiently calculate the mean and the variance
of the number of correctly predicted wins (or more generally the total points earned in an
office pool) for a given slate of predicted winners. We apply these results to both random and
Markov tournaments. We then show how to determine optimal office pool predictions that
maximize the expected number of points earned in the pool. Considering various Markov
probability models for predicting game winners based on regular season performance,
professional sports rankings, and Las Vegas betting odds, we compare our predictions
with what actually happened in past NCAA and NIT tournaments. These models perform
similarly, achieving overall prediction accuracies of about 58%, but do not surpass the simple
strategy of picking the seeds when the goal is to pick as many game winners as possible.
For a more sophisticated point structure, however, our models do outperform the strategy
of picking the seeds.
(March Madness; Office Pools; Probability Modeling; Statistical Estimation; Markov Models;
Dynamic Programming )

1. Introduction
The men’s college basketball season in the United
States culminates in March of each year with the end-
of-season tournaments that comprise “March Mad-
ness.” The National Collegiate Athletic Association
(NCAA) places 64 of the best college teams in the
country in a single elimination tournament, and the
NCAA tournament winner is crowned the national
champion. An additional 32 teams are invited to com-
pete in the National Invitational Tournament (or the
NIT). In recent years, women’s college basketball has
gained in popularity, and the NCAA also sponsors a
64-team women’s tournament each spring.

Betting on NCAA basketball games is very popular,
and the games that comprise March Madness rival the
Super Bowl (the championship of the National Foot-
ball League) in terms of the total amount of money

wagered (an estimated $80 million were wagered
on the 1998 “Final Four” alone (Barnhouse 1999)).
Outside of formal sports betting markets, March
Madness has given rise to a plethora of office pools
(Atkins 1998). The goal in these pools is typically to
predict the winners of as many games as possible.
More sophisticated pools incorporate point schemes
that award different numbers of points to correct pre-
dictions depending on which teams and games are
involved. In a pure office pool, entry fees contribute to
a prize that is awarded to the player with the highest
point total, shared in the case of ties, or perhaps shared
among first-, second-, and third-place contestants in
some prespecified manner.

In pools with a small number of participants,
entrants might consider not only which teams are
likely winners in tournament competition, but also
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how their fellow pool participants are likely to behave.
In a manner akin to the avoidance of “popular num-
bers” in state lotteries, game-theoretic machinations
could reasonably lead a player to the deliberate choice
of underrated teams in an attempt to distinguish one-
self from the competition. A small reduction in the
probability of winning the pool might be compensated
by the improved conditional winnings associated with
a less popular gamble.

Worrying about the play of others in a pool becomes
increasingly difficult in pools with a very large
number of participants, such as those found on the
Internet with tens or even hundreds of thousands
of participants. Even in small pools, however, many
players are likely to be preoccupied with their abil-
ity to correctly forecast tournament outcomes, or
to contrast their own assessments of likely team
performance against the point scheme employed by
the pool to make what seem like point-winning picks.
Maximizing the probability of scoring the most points
in the pool, or maximizing the expected number
of points gained, provide reasonable objectives for
such players. The probability that a given player
scores the most points in a pool depends upon the
actions of other players, which again raises diffi-
cult game-theoretic issues, especially in large pools.
Maximizing the expected number of points gained,
however, depends only upon the tournament struc-
ture, the chances that different teams will defeat other
teams, and the point scheme employed by the pool.

The authors of this paper have unsuccessfully
participated in NCAA pools for more than a decade.
Simply put, we decided that we would like to win
once in a while, or at least come out close to the top.
Surely there must be better and worse strategies for
garnering points in an office pool, but our experience
suggested that we had only mastered the latter.

This paper began as a concerted effort to reverse
this trend, but it has evolved into much more. The
rules for office pools combined with the beautiful
mathematical structure of single-round elimination
tournaments give rise to a rich family of models that
are interesting in their own right. Though others have
studied the mathematical structure of elimination
tournaments (David 1959, Edwards 1996, Horen and
Riezman 1985, Knuth 1987), to our knowledge, Breiter

and Carlin (1997) (henceforth BC) are the only authors
who have addressed office pools thus far. BC first
presented a model for estimating the chance that any
team would defeat any other team based on Las Vegas
point spreads and the ratings of sports expert Jeff
Sagarin. For each of the four 16-team regional sub-
tournaments of the NCAA men’s basketball tourna-
ment, BC used this model to perform 10,000 Monte
Carlo simulation runs for each possible slate of game
predictions to determine the set of predictions that
maximized the expected points gained under office
pool rules reflective of actual contests. They compared
their optimal-by-simulation and enumeration strate-
gies to the actual results of the 1996 NCAA men’s
tournament to see how well their strategies would
have fared in practice, and showed that their model-
derived strategies indeed provided an improvement in
the actual (as opposed to expected) score over simpler
strategies such as just picking the seeded favorites to
advance.

In contrast to the simulation and enumeration
approach of BC, we present exact recursions for com-
puting the mean and the variance of the number of
points garnered in an office pool for any given slate of
predicted game winners, obviating the need for sim-
ulation. In addition, our recursion for the expected
number of points in an office pool is ideally suited for
determining a slate of predicted game winners that
maximizes the expected number of points in an office
pool via dynamic programming, obviating the need
for explicit enumeration. While BC considered the 16-
team regional tournaments (which required them to
simulate 215 = 32�768 strategies for each tournament,
eating 8 hours on a Sparc20 workstation in the pro-
cess), they did not attempt to optimize over the entire
tournament (which would have required enumeration
of 263 ≈ 9�22 × 1018 different strategies). By contrast,
in a second or two our dynamic program determines
an optimal strategy over the entire tournament for a
wide class of office pool scoring rules, including those
commonly found on the Internet.

In the next section, we review the structure of single
elimination tournaments, and develop a reasonably
general model for office pools within this structure.
In §3, we show how to evaluate office pool prediction
strategies by developing recursions for the mean and
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the variance of the total points awarded corresponding
to any particular set of predictions. We demonstrate
these ideas via recourse to a random tournament not
only because these results are of independent interest,
but also because the ensuing predictions serve as a
basis for determining whether any given strategy per-
forms better than chance. Determining the variance of
the total score in an office pool is not easy, so for conti-
nuity we have dispatched the details to the Appendix.
In §4, we develop a dynamic program for selecting
that prediction strategy that maximizes the expected
total score in an office pool. It is actually easier to
identify the optimal strategy than it is to calculate
the variance of the total score for any single strat-
egy! We return to men’s college basketball in §5 where
we propose three alternative Markov models for the
probability that any team defeats any other team in
any encounter. In §6 we apply our models to the 1998
and 1999 NCAA and NIT post-season tournaments.
We discover that, although our models perform rea-
sonably well, they do not outperform the simple strat-
egy of picking the seeds when the sole objective is to
correctly pick as many game winners as possible. The
contribution of our models increases, however, as the
scoring system used in the office pool becomes more
sophisticated. We offer brief closing remarks in §7.

2. Single Elimination Office Pools

2.1. Single Elimination Tournament Structure
In this section, we describe briefly the structure of
the tournaments under consideration (see Edwards
1996 for more detail). We consider k-round single
elimination tournaments with 2k entrants (or teams in
the basketball context). In such a tournament, game
winners in a given round proceed to play in the next
round, while game losers are eliminated from the
tournament. This continues until there is only one
undefeated team left: the tournament champion! Thus,
in the rth round of a k-round single elimination tour-
nament, there are 2k−r games, r = 1�2� � � � � k. Note that
in total, such a tournament contains

k∑
r=1

2k−r = 2k−1 (2.1)

games. This result can be understood intuitively by
noting that with the exception of the tournament
champion, all 2k − 1 other teams in the tournament
lose exactly once. In the NCAA college basketball
tournament, there are k= 6 rounds, 26 = 64 teams, and
hence 63 games.

Initial pairings, and all possible subsequent games,
are dictated by the tournament bracket (or draw). As
shown in Figure 1, the tournament bracket induces a
binary tree linking game winners from one round to the
next. Let Vrg denote the identification of the winning
team (the victor) in game g of round r . As shown in
Figure 1, the participants in all first round games are
determined by the tournament draw, while in round
r > 1, game g is played between teams Vr−1�2g−1 and
Vr−1�2g , the victors of games 2g− 1 and 2g in round
r−1.

The tournament draw dictates which teams are
eligible to play in which games of each round of
the tournament. Let �	r�g
 be the set of teams that
could conceivably play in game g of round r , g =
1�2� � � � �2k−r ; r = 1�2� � � � � k. Because game g in round
r is between the winners of games 2g− 1 and 2g of
round r − 1, only teams playing in these latter games
are eligible to play in game g of round r . Consequently,
the set of all teams that could conceivably play in
game g of round r is given by

�	r�g
 = �	r−1�2g−1
∪�	r−1�2g


for g = 1�2� � � � �2k−r �

r = 1�2� � � � � k� (2.2)

since any of the teams that could play in games
2g−1 or 2g of round r −1 could also play in game g
of round r . Now let i denote the index of a team in the
tournament draw, i= 1�2� � � � �2k, and equate the team
index i to �	0� i
, the set of teams that play in fictional
“game” i of fictional “round” 0. Iterating the recursion
in Equation 2.2 from this initial condition yields the
result

�	r�g
 = i �2r 	g−1
+1 ≤ i ≤ 2rg�

for g = 1�2� � � � �2k−r �

r = 1�2� � � � � k� (2.3)

Equation 2.3 thus identifies the set of all possible teams
that could conceivably play in game g of round r .
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Figure 1 The Tournament Bracket in a k-round Single Elimination Tournament

It is also convenient to identify both the exact game
any team would play having advanced to a given
round r , and the set of possible opponents any team
would face in that game. Let �	i� r
 be the index for
the game team i would play in round r . From 2.3 we
see that if team i can play in game g of round r , then

i

2r
≤ g ≤ i−1

2r
+1� (2.4)

The integrality of g implies that

�	i� r
=
⌈
i

2r

⌉
for i = 1�2� � � � �2k�

r = 1�2� � � � � k (2.5)

where the ceiling function 
x� denotes the smallest
integer ≥ x. We then obtain immediately that �	i� r
,
the set of opponents team i could possibly face in
round r , is given by

�	i�r
=


�	r−1�2�	i�r

 i∈�	r−1�2�	i�r
−1


�	r−1�2�	i�r
−1
 i∈�	r−1�2�	i�r


· (2.6)

2.2. Office Pools
In an office pool, participants make predictions
regarding the winners of all games in a tournament.

Points are awarded for correct winning predictions,
and the pool participant who garners the largest
total number of points wins the pool and any asso-
ciated prizes. With respect to the NCAA men’s bas-
ketball tournament, there is seemingly no end to the
number of office pools across the United States and
around the globe, as any cursory Internet search will
reveal.

An interesting feature of office pools is that one
only has to predict winners correctly. For example, in
a 2-round tournament, suppose one picks Team 1 to
defeat 2 in the first game of Round 1, 3 to defeat 4 in
the second game, and 1 to defeat 3 in Round 2 (the
championship). If 1 defeats 2, 4 defeats 3, and then
1 defeats 4 in the final, one would receive credit for
making two correct winning predictions.

Recall that Vrg is the random variable reporting the
identification of the victor of game g in round r , and
let vrg be the prediction of some pool participant for
the victor of game g in round r ; g = 1�2� � � � �2k−r �
r = 1�2� � � � � k. We only consider consistent prediction
strategies of the form vrg ∈ 	vr−1�2g−1�vr−1�2g
, which
says that a team can only be predicted to win game
g in round r if it is also predicted to win either
game 2g−1 or 2g in round r−1. A correct prediction
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occurs when Vrg = vrg . Define the random variables
Wrg	vrg
 as

Wrg	vrg
=
{

1 Vrg=vrg for g=1�2���� �2k−r ; r=1�2���� �k�

0 otherwise
(2.7)

Clearly, Wrg	vrg
 is the indicator random variable that
reveals whether the prediction vrg correctly identifies
the winner in game g of round r .

To determine scores in office pools, let �rg	vrg

denote the number of points that are awarded if team
vrg is correctly predicted to win game g of round r .
The total score corresponding to a complete tourna-
ment prediction strategy v= {vrg} for g = 1�2� � � � �2k−r �
r = 1�2� � � � � k, denoted by T	v
, is then given by

T	v
=
k∑
r=1

2k−r∑
g=1

�rg	vrg
Wrg	vrg
� (2.8)

Much of the ensuing analysis in this paper will focus
on evaluating the mean and variance of T	v
 for a
given prediction strategy v, and determining the opti-
mal prediction strategy v∗ that serves to maximize the
expected total score E	T 	v

.

While different pools have different rules for how
points are awarded, our scoring model allows for the
most common schemes encountered in practice. In
the simplest case, single points are awarded for cor-
rect winning predictions, in which case �rg	vrg
 = 1
∀g� r and the total score for a given entrant T	v
 cor-
responds to the total number of games in which the
winner was correctly forecasted. With respect to the
NCAA basketball tournament, many pools use scor-
ing schemes where the points awarded increase with
the rounds of the tournament (so �rg	•
 would be
increasing in r). More elaborate contests encourage
pool participants to support weaker teams by offering
a point system that greatly rewards the correct predic-
tion of victories by teams judged to be weak relative to
the tournament favorites a priori. Our scoring model
can incorporate any interaction desired between the
predicted winner of a given game and the location of
the game itself in the tournament (as identified by the
indices g and r), allowing us the flexibility to consider
several different scoring schemes.

3. Evaluating Office Pool
Prediction Strategies

3.1. Fundamental Recursion of Office Pools
We will now exploit an important property of the
tournament bracket. As is clear from Figure 1, any
game g in round r completes (or crowns) a subtour-
nament involving all of the teams i ∈ �	r�g
. Define
Trg	v
 as the partial score for a prediction strategy
v counting only games within the subtournament
crowned by game g in round r . Since game g in round
r is played between the victors of games 2g−1 and 2g
in round r−1, we have

Trg	v
 = Tr−1�2g−1	v
+Tr−1�2g	v


+�rg	vrg
Wrg	vrg
� (3.1)

for r = 1�2� � � � � k� g = 1�2� � � � �2k−r . Note that
Tk1	v
= T	v
. Iterating equation 3.1 yields

Trg	v
=
r∑
j=1

2r−j g∑
h=2r−j 	g−1
+1

�jh	vjh
Wjh	vjh
� (3.2)

for r = 1�2� � � � � k� g= 1�2� � � � �2k−r . We will make use
of this result subsequently.

3.2. Evaluating the Mean Total Score
Consider any consistent prediction strategy v in an
office pool. Let �rg	v
 denote the expected total
number of points garnered via v in all games of the
subtournament crowned by game g in round r , and
let �rg	vrg
= PrWrg	vrg
= 1�. Taking expectations on
both sides of Equation 3.1 yields the recursion

�rg	v
 = �r−1�2g−1	v
+�r−1�2g	v


+�rg	vrg
�rg	vrg
� (3.3)

for r = 1�2� � � � � k� g = 1�2� � � � �2k−r where �0g = 0 for
g = 1�2� � � � �2k.

3.2.1. Example: A Random Tournament. Con-
sider a random tournament where a single point
is awarded for each correctly chosen game winner
(�rg	vrg
 = 1 ∀r�g). The word “random” could have
two different meanings here, both of which lead to
equivalent results. One interpretation is that in any
game between any two teams, each team stands to
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win with probability 1/2 independently of the results
of other games. The other interpretation is that for a
tournament where teams have arbitrary probabilities
of winning in whatever games they may play, the pool
participant selects a prediction strategy from the set
of all possible 22k−1 prediction strategies (since there
are two possible outcomes for each of the 2k−1 games
in the tournament) at random (so any particular pre-
diction strategy is chosen with a priori probability
1/22k−1).

Under either interpretation, the probability that the
winner of a particular game in the rth round is called
correctly is given by 1/2r . For the first interpretation,
note that any team picked to win in round r must
have been picked in the r − 1 previous rounds, and
since there is a 1/2 probability of that team winning
in any game it plays, the unconditional probability of
winning in round r must equal 1/2r . For the second
interpretation, note that any game in the rth round
crowns a single elimination subtournament of exactly
2r −1 games. There are thus 22r−1 different prediction
strategies corresponding to this subtournament, and,
of these, exactly 22r−1−r select a particular team to win
r times in a row (since after removing the r games for
which the team in question has been selected to win,
there are 2r −1− r remaining games in the subtourna-
ment, each with two possible outcomes). The proba-
bility of correctly picking the winner of a game in the
rth round under this interpretation is thus given by
22r−1−r /22r−1 = 1/2r as well.

What is the expected number of correctly pre-
dicted winners in a random single elimination tourna-
ment? Let �k−1 denote the mean number of correctly
predicted wins in a random tournament with k− 1
rounds, and then consider a random tournament with
k rounds formed by playing off the winners of two dis-
joint random 	k−1
-round tournaments. Under these
assumptions, the expected number of correctly called
games will be the same in each of the two 	k−1
-round
tournaments (and there is no dependence on whatever
prediction strategy is used). Specializing Equation 3.3
to obtain the expected number of correct predictions
for a random tournament with k rounds, we see that

�k = 2�k−1 +
1
2k

for k = 1�2�3� � � � � (3.4)

where we define �0 = 0. The solution to this is given by

�k =
k∑
r=1

2k−r
1
2r

= 2k

3

(
1− 1

4k

)
� (3.5)

Equation 3.5 can be understood as follows: In round r ,
there are 2k−r games. The chance of correctly identify-
ing the winner of any game in round r is equal to 1/2r ,
and thus the expected number of correct winning pre-
dictions in round r equals 2k−r /2r . Summing over all
rounds yields the expected number of correct predic-
tions for the entire tournament. Since there are 2k− 1
games in a k-round single elimination tournament, we
see that the fraction of games that are correctly called
in a random tournament rapidly approaches 1/3 as the
number of rounds in the tournament grows.

3.2.2. Example: A Markov Tournament. In a
Markov tournament, we assume that the probability
that team i defeats team j in any game involving these
two teams equals pij , independently of the outcomes
of prior games. The Markov assumption is popular
among those who have modeled single elimination
tournaments (for examples, see David 1959, Edwards
1996, Horen and Riezman 1985, and Knuth 1987). Use
of Equation 3.3 is possible on assessing the probabil-
ities �rg	vrg
= PrWrg	vrg
= 1�. The Markov assump-
tions enable such an assessment (David 1959, Edwards
1996).

Suppose that the team picked to win game g of
round r (vrg) is also the team that was picked to win
game 2g−1 of round r−1 (so vrg = vr−1�2g−1
. Then for
vrg to be a successful prediction in game g of round r ,
this team must both be a successful prediction in game
2g− 1 of round r − 1 (that is, Wr−1�2g−1	vrg
 = 1) and
defeat whatever opponent is faced in game g of round
r . If team � is a possible opponent of vrg in round r
(so �∈�	vrg� r
), then conditional upon vrg winning its
game in round r−1, team �will face team vrg in round
r with probability �r−1�2g	�
, but lose with probability
pvrg� ��. Considering all possible opponents, we see that
if vrg = vr−1�2g−1, then

�rg	vrg
= �r−1�2g−1	vrg

∑

�∈�	vrg�r

�r−1�2g	�
pvrg� �� (3.6)

A similar result holds if vrg instead was chosen as the
winner of game 2g in round r − 1. Summarizing, we
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see that

�rg	vrg
=



�r−1�2g−1	vrg


∑
�∈�	vrg�r
�r−1�2g	�
pvrg���

if vrg=vr−1�2g−1

�r−1�2g	vrg

∑
�∈�	vrg�r
�r−1�2g−1	�
pvrg���

if vrg=vr−1�2g

� (3.7)

for r = 1�2� � � � � k and g = 1�2� � � � �2k−r . Substituting
the results from Equation 3.7 into Equation 3.3 enables
rapid evaluation of the expected total score for any
given prediction strategy v.

3.3. Evaluating the Variance of the Total Score
Equation 3.1 can also be used to find the variance
of the total score. Recall that Trg	v
 is the total score
obtained from following prediction strategy v through
the subtournament crowned by game g in round r ,
and let �2

rg	v
 = Var	Trg	v

. From Equation 3.1 we
directly obtain the recursion

�2
rg	v
 = �2

r−1�2g−1	v
+�2
r−1�2g	v


+�2
rg	vrg
�rg	vrg
	1−�rg	vrg



+2Cov	Tr−1�2g−1	v
�Tr−1�2g	v



+Cov	Tr−1�2g−1	v
��rg	vrg
Wrg	vrg



+Cov	Tr−1�2g	v
��rg	vrg
Wrg	vrg

�� (3.8)

for r = 1�2� � � � � k and g = 1�2� � � � �2k−r . For specific
probability models, this recursion can be specialized
as illustrated in the Appendix. Typically the challenge
rests with the evaluation of the last two terms in this
equation.

4. Optimal Prediction Strategies
for Office Pools

Now consider the problem of selecting a prediction
strategy v to maximize the expected total score E	T 	v

�
This can be accomplished via a dynamic program that
exploits the mean value recursion of Equation 3.3.
Define �∗

rg	i
 as the expected total score in the subtour-
nament crowned by game g in round r when team
i is predicted to win games �	i� j
 for j = 1�2� � � � � r
and all other predictions within this subtournament
are optimal for this subtournament; �∗

rg	i
 is thus the
value function for this problem. Also, define �∗

rg as

the optimal expected total score for the subtournament
crowned by game g in round r , and v∗rg as the opti-
mal prediction for the winner of this subtournament.
From 3.3 we obtain the recursion:

�∗
rg	i
=




�∗
r−1�2g−1	i
+�∗

r−1�2g+�rg	i
�rg	i

if i∈�	r−1�2g−1


�∗
r−1�2g	i
+�∗

r−1�2g−1+�rg	i
�rg	i

if i∈�	r−1�2g


� (4.1)

for r = 1�2� � � � � k, and g = 1�2� � � � �2k−r , and �∗
0i	i
=

�∗
0i = 0 for i= 1�2� � � � �2k. The optimal subtournament

expected total scores �∗
rg are then given by

�∗
rg = max

i∈�	r�g

�∗
rg	i
� (4.2)

while the optimal subtournament winning predictions
v∗rg are set equal to

v∗rg = arg max
i∈�	r�g


�∗
rg	i
 (4.3)

again for r = 1�2� � � � � k and g = 1�2� � � � �2k−r .
To obtain the overall optimal prediction strategy

requires “unpacking” the optimal subtournament
predictions in a consistent manner to ensure that
predicted winners in a given round are also predicted
winners in all previous rounds. The optimal predic-
tion for the winner of the entire tournament is equal to
v∗k1, while the optimal total score in the office pool over
the entire tournament is equal to �∗

k1. The following
unpacking algorithm returns the optimal prediction
strategy on a game by game basis, along with the
corresponding optimal expected total scores.

Algorithm UNPACK
FOR r = k to 2

FOR g = 1 to 2k−r

IF v∗rg ∈ �	r−1�2g−1
 THEN
v∗r−1�2g−1 ← v∗rg
�∗
r−1�2g−1 ← �∗

r−1�2g−1	v
∗
rg


ELSE
v∗r−1�2g ← v∗rg
�∗
r−1�2g ← �∗

r−1�2g	v
∗
rg


NEXT g
NEXT r
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5. MarkovModels for College
Basketball Tournaments

To apply the models developed above requires the
development of probability models for predicting
team performance. Several authors have considered
the use of Markov models for predicting game win-
ners in college basketball, but almost all of these
have been statistical models calibrated within tour-
naments based on team seedings (Edwards 1998,
Schwertman et al. 1991, 1996). These seedings are
meant to reflect the NCAA tournament committee’s
view of the strengths of the teams in the tournament:
the lower the seed, the better the team (and number
one seeds are typically favorites to win the tourna-
ment). However, the office pool problem seemingly
precludes the use of calibrated models based on team
seedings from previous tournaments, for although the
seeding structure itself is unchanged, the actual teams
seeded in the tournament are completely different
from year to year. On the other hand, seeding informa-
tion is the simplest indicator of team quality available
at the start of a tournament, and indeed one simple
strategy for office pool predictions is simply to “go
with the seeds.” In the sections that follow, we will
consider three Markov models that can be constructed
with relative ease before the start of a tournament that
do not rely on seeding information. In assessing the
performance of these models, however, we will com-
pare the accuracy of model-dependent optimal predic-
tion strategies to the simple strategy of going with the
seeds later on.

5.1. A Regular Season Model
The first model we consider is one based on regular
season records (publicly available from sources such
as ESPN and CBS Sportsline among others). Essentially,
we view the tournament as an extension of the reg-
ular season, and argue that tournament performance
should reflect ability in the season just ended. The
organization of NCAA college basketball is compli-
cated, with different teams belonging to different
conferences with differing levels of play. Any one
college team will only play a small fraction of all pos-
sible teams, and, in a given season, teams that have
not faced each other often meet for the first time in
tournament play. How can one predict the outcome of

a game between two teams that have not played each
other?

Our model is very simple. Let NCAA denote the set
of NCAA Division 1 basketball teams. For team i ∈
NCAA, we assume the existence of a strength coefficient
si ≥ 0. We then postulate that in any game between
team i and team j, i will defeat j with probability

pij =
si

si+ sj
· (5.1)

The parameters of this model, known as a
Bradley-Terry model (Bradley and Terry 1952), can
only be identified to a multiplicative constant, so we
force

∑
i∈NCAA si = 1.

To estimate this model, let nij denote the observed
number of times team i defeated team j during the
regular season (including conference tournaments).
We select the strength coefficients by maximizing the
log-likelihood function

log� = ∑
i� j∈NCAA

nij log
si

si+ sj
� (5.2)

subject to
∑
i∈NCAA si = 1 and si ≥ 0 ∀i ∈ NCAA. In

our actual applications described below, we did not
consider all NCAA teams individually. Rather, in esti-
mating the strength coefficients we included all 64
teams in the NCAA tournament, all 32 teams from
the National Invitational Tournament (the NIT), and
lumped all remaining nontournament teams into one
“megateam” for which we estimated a single strength
coefficient. This was achieved by treating any regu-
lar season game between one of the 96 tournament
teams and a nontournament team as a game between
the individual tournament team in question and the
megateam.

At first blush, this model might appear overly
simplistic, as it seemingly ignores the complicated
relationships between teams. However, it is important
to note that the interactions between teams are implic-
itly accounted for in this model via the estimation
process itself. For example, suppose that there are only
3 teams, a� b, and c, and suppose that games are only
played between a and b, and b and c; a and c never
play. Further suppose that the fraction of games in
which a defeats b was observed to equal fab while the
fraction of games in which c defeats b equals fcb. The
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strength coefficients would be uniquely determined in
this instance as the solutions to

sa
sa+ sb

= fab� (5.3)

sc
sb+ sc

= fcb� (5.4)

sa+ sb+ sc = 1� (5.5)

Solution yields a strength coefficient sa of

sa =
fab	1−fcb

1−fabfcb

· (5.6)

What is important to note is that even though team a
never plays team c, the strength coefficient sa depends
on the observed performance of team c. In applying
this model to the NCAA data, the same principle
applies. The strength coefficient estimated for any
given team depends crucially on the performance of
other teams, even if there were no games observed
between the teams in question.

5.2. An Expert Rating Model
There are various “expert” ratings of team perfor-
mance provided over the course of the college bas-
ketball season, including Sagarin ratings (published in
USAToday), Massey ratings (�www.mratings.com�), the
NCAA’s Ratings Percentage Index (�collegerpi.com�),
and so forth. Perhaps these experts actually know
something, in which case we can borrow that knowl-
edge. We focus our attention on the Sagarin ratings,
which are meant to be interpreted as expected scor-
ing rates on a team by team basis. Let (i denote the
Sagarin rating for team i. Our model assumes that
basketball teams score points in accord with uncor-
related Poisson processes, and consequently the point
spread Xij between teams i and j has a mean given by
(i −(j , and variance given by (i +(j . Since the typ-
ical values for Sagarin ratings are large (the average
for 1999 NCAA tournament teams was 83.5), we fur-
ther approximate the distribution of the point spread
Xij by a normal distribution with mean and variance
as stated earlier (for the normal distribution nicely
approximates the Poisson for variables with suffi-
ciently large expected values, which makes the point
spread approximately the difference in two normally
distributed random variables). The probability pij that

team i defeats team j in any game is then simply the
probability that the point spread is positive (there are
no ties in the tournament), which is given by

pij = PrXij > 0�=*
(
(i−(j√
(i+(j

)
� (5.7)

where *	•
 is the cumulative distribution function for
the standard normal random variable.

We have not attempted to verify whether the actual
points scored in basketball games follow the Poisson
distribution, as we are less interested in the statistical
truths of point spread distributions than in improved
performance in office pools. However, empirical sup-
port for the use of the normal distribution (albeit with
a constant standard deviation) as a model for point
spreads in football is presented in Stern (1991).

Is it reasonable to assume that the points scored by
two competing teams in a given game are uncorre-
lated? One could argue that the more points scored
by one team, the fewer scored by the other, which
would lead to a negative correlation between team
scores. Alternatively, one could argue that games take
on the characteristics of offensive or defensive battles,
which would lead to a positive correlation between
team scores. For example, a reviewer suggested that
by slowing the offensive tempo of the game via use of
the shot clock, a team could both reduce the number of
points it scores as well as those scored by its opponent
(by denying them time with the ball), inducing a pos-
itive correlation. Citing Stern’s (1991) football study,
Carlin (1996) has argued that the actual point spreads
in NCAA tournament games roughly follow a normal
distribution, but with a constant standard deviation.
Such a model was also employed by Breiter and Carlin
(1997).

There is an interesting implication of the Carlin
model: If Xi and Xj are the number of points scored by
teams i and j in a game against each other, then a cor-
related Poisson scoring model with a constant point
spread standard deviation + forces the relationship

Var	Xi−Xj
= (i+(j−2 Cov	Xi�Xj
= +2� (5.8)

If +2 < (i + (j , Carlin’s model implies a positive
correlation between Xi and Xj while if +2 > (i+(j a
negative correlation results. One implication of this
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model is that the points scored by each team in games
between high scoring teams on average (high-( teams)
will be positively correlated, while the points scored
by each team in games between low scoring teams on
average (low-( teams) will be negatively correlated.

It is certainly easier to assume that team scoring
is uncorrelated as this avoids estimating +. We also
note that the range of values that can be assumed
by

√
(i+(j based on actual Sagarin ratings is not

large. Considering the 1999 NCAA Tournament as
an example, the maximum value possible of

√
(i+(j

was equal to 14.2, while the minimum possible value
was equal to 11.3; most games would involve val-
ues of

√
(i+(j near 13. Carlin (1996) used the con-

stant value of + = 10 < 13 in his models, which
implies a belief that the scores in most games are pos-
itively correlated. Again, our interest is less in the
nature of the correlation between game scores than in
whether the use of a simple model enables better office
pool performance. We therefore retain our simplifying
assumption that the points scored by competing teams
in the same game are uncorrelated random variables.

5.3. A Model Based on Las Vegas Odds
An alternative source for information on team
performance is the market. Las Vegas sports books
offer a variety of different bets on NCAA tourna-
ment games. Two popular bets are based on point
spreads and point totals (that is, the sum of the points
scored by both teams in a game). Let (i and (j again
represent the average scoring rates per game of teams
i and j, and let xij and yij be the point spreads
and point totals posted just before the start of the
tournament (available from The Las Vegas Sun, the
Wager Information Network at �winmor.com�, or other
sources). If the market is a good judge of the truth in
the sense that the posted point spreads and totals are
correct on average, then

xij = (i−(j� (5.9)

and

yij = (i+(j� (5.10)

These equations solve to yield

(i =
xij+yij

2
� (5.11)

and

(j =
yij−xij

2
· (5.12)

We have calculated the scoring rates using Equation
5.11–5.12, and again employed Equation 5.7 to
estimate the probability that i defeats j in any game.

6. MarchMadness!
6.1. Maximizing the Number of Correct Predictions
To illustrate our models, we focus on the 1998 and
1999 NCAA and NIT men’s basketball tournaments.
For each of these four tournaments, we have (i) imple-
mented our three Markov models (referred to as the
regular season, Sagarin, and Las Vegas odds mod-
els respectively) as described in §5, (ii) optimized the
tournament predictions using the methods of §4 after
setting �rg	•
 = 1 ∀r�g, (iii) computed the variance
of the total number of correct predictions using the
methods described in the Appendix, (iv) counted the
actual number of correct predictions corresponding to
our optimal strategies, and (v) compared these results
to predictions based on the tournament seedings, and
to what would be expected from random predictions
(as discerned from our random tournament models).
Virtually all of the data required for our models were
collected via the internet from sources such as ESPN,
CBS Sportsline, USA Today, the Las Vegas Sun, and the
Wager Information Network (�winmor.com�).

The results are summarized in Tables 1 and 2.
Table 1 reports the overall agreement between the
three models, picks based on the tournament seedings,
and the actual results obtained from all 188 games
considered (63 games in each of the 1998 and 1999
NCAA tournaments, and 31 games in each of the
1998 and 1999 NIT tournaments). Each cell in Table 1

Table 1 Overall Prediction Agreement Over 188 Games (%) (1998
and 1999 NCAA and NIT Tournaments)

Las Vegas Actual
Regular Season Sagarin Odds Results

Pick the Seeds 146 (78) 146 (78) 156 (83) 106 (56)
Regular Season 152 (81) 133 (71) 111 (59)
Sagarin 141 (75) 108 (57)
Las Vegas Odds 110 (59)
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Table 2 Prediction Performance by Tournament

NCAA 1999 NCAA 1998 NIT 1999 NIT 1998
Actual/Expected/Standard Actual/Expected/Standard Actual/Expected/Standard Actual/Expected/Standard

Deviation of Wins Deviation of Wins Deviation of Wins Deviation of Wins

Chance –/21.3/4.5 –/21.3/4.5 –/10.7/3.2 –/10.7/3.2
Pick the Seeds 36/–/– 39/–/– 17/–/– 13/–/–
Regular Season 39/42�6/4�3 37/43�5/4�1 17/12�9/3�4 18/15�0/3�4
Sagarin 41/41�4/4�2 39/38�5/4�5 15/13�1/3�4 13/13�0/3�4
Las Vegas Odds 38/44�6/3�8 35/45�1/4�3 22/17�5/3�7 15/19�2/3�7

states the number (and percentage) of all 188 games
in which the row and column predictions/realizations
for the winning team were identical. Overall, the pre-
dictive accuracies of the models do not differ greatly
from each other or from the simple strategy of pick-
ing the seeds. The optimized regular season model
correctly identified 111 of the 188 games considered,
followed by 110 correct predictions for the Las Vegas
odds model, 108 for the Sagarin model, and 106 based
on simply picking the seeds. It is interesting to note
that in comparing the predictions to each other, the
predictions derived from Las Vegas odds agreed with
picking the seeds on 156 out of 188 games, while the
regular season and Sagarin models agreed on 152 out
of 188 games. One possible explanation for such high
concordance in predictions is that those placing bets
in Las Vegas are relying heavily on the tournament
seedings, while the expert Sagarin ratings and the reg-
ular season model have extracted essentially the same
information from regular season records.

Table 2 reports the performance of each model for
each tournament along with the mean and standard
deviation of the number of correct predictions asso-
ciated with each model. Also reported are the tour-
nament by tournament performance of picking by
the seeds, and the mean and standard deviation one
would expect from random predictions. Perhaps the
most striking feature of Table 2 is that for all four tour-
naments considered and for all three of our models
from §5, the actual number of correct predictions falls
within two standard deviations of the expected num-
ber 11 out of 12 times, and on six occasions the number
of correct predictions is within one standard deviation
of what is expected. The Sagarin model is particularly
noteworthy in its consistency: The expected number of
game winners correctly predicted by this model equals

41.4, 38.5, 13.1, and 13.0 across the four tournaments.
The actual number of correct predictions for the
Sagarin model were equal to 41, 39, 15, and 13, respec-
tively, a remarkable result.

Table 2 shows that is very difficult to discount any of
the models we have considered on empirical grounds,
for the actual performance of these models is well
within the variability expected of each. However, it is
also very difficult to discriminate among the models
considered based on the data. What is clear is that all
of our models perform much better than chance would
suggest; all of the models are successful more than
1
3 of the time. Then again, predictions based solely
on tournament seeding are just as competitive as our
models. Indeed, for the 1998 NCAA and 1999 NIT
tournaments, none of our models performed better
than picking by the seeds (though in both cases there
were models that performed equally well).

The results from Table 2 suggest that, if the goal is to
choose as many correct game winners as possible, our
models do not outperform simply picking the seeds.
This will also be true in any office pool where the point
structure is such that maximizing the total number of
points is equivalent to maximizing the number of cor-
rectly chosen winners. However, in office pools where
the point structures are more complicated, our models
can make a difference, as discussed below.

6.2. More Complicated Point Structures:
The Packard Pool

An office pool managed by Professor Erik Packard
of the mathematics department at Mesa State Univer-
sity offers an interesting test of our models (“Contest
2” at �mesastate.edu/˜epackard/hoop/contest.html�).
Scoring in this pool works as follows: If a number one
seed is correctly chosen to win its game in round r ,
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then the pool rewards such predictions with .	r
 =
1890�3960�7392�12320�18480� and 27720 points for
r = 1 through 6, respectively. A correct winning pre-
diction in round r for a team seeded in position n is
rewarded with 	1+n
.	r
/2 points for n= 1�2� � � � �16
and r = 1�2� � � � �6. Thus, the point system used in
this contest offers more points to teams perceived as
weaker a priori (that is, teams with higher seedings),
but also rewards correct predictions that reach deeper
into the tournament. This scoring system fits within
the general scoring framework we have considered,
so it is possible to optimize our models from §5 for
use with the “Packard Pool” (see the Internet site ref-
erenced above for a justification of the specific point
scheme employed). We can compare these results to
what would be expected from a simple strategy of
picking the seeds. In addition, since the website for
this pool reports participants’ performance for the
1998 and 1999 NCAA tournaments, we can see how
we would have fared had we actually entered the pool.

The results appear in Table 3. Apparently, we would
have fared quite well. The winning entry in the 1999
pool garnered a total of 333,572 points. Our optimized
Sagarin model scores 405,421 points, which would
have won the pool. The models based on Las Vegas
odds and the regular season do not perform as well.
However, all of our optimizations defeat the strategy
of picking the seeds, which would have scored only
239,256 points in the 1999 pool. For the 1998 tour-
nament, the results are even more striking. The win-
ner of the office pool garnered 218,545 points. This is
slightly better than our Las Vegas odds model, which
would have scored 213,285 points. However, either
the regular season or Sagarin models would have
won the pool with 356,969 and 274,572 points, respec-
tively. Apparently, simply picking the seeds would
also have won the Packard Pool in 1998, achieving

Table 3 Performance in the Packard Pool

NCAA 1999 NCAA 1998
Actual/Expected/Standard Actual/Expected/Standard
Deviation of Total Score Deviation of Total Score

Pick the Seeds 239,256/–/– 233,702/–/–
Regular Season 274,956/302,964/47,293 356,969/304,181/54,213
Sagarin 405,421/299,062/55,738 274,572/273,333/63,974
Las Vegas Odds 299,942/339,887/62,735 213,285/514,516/138,543

233,702 points! More interesting to us, however, is the
fact that our optimizations on the whole do outper-
form picking the seeds for a complicated point struc-
ture such as that offered by the Packard Pool.

7. Conclusions
We have presented a framework for evaluating
alternative prediction strategies for office pools. We
have developed new models for evaluating the mean
and the variance of the total score in an office pool
for reasonably general point structures and probability
models, and applied these models to random and
Markov tournaments. We have also shown how to
optimally select prediction strategies to maximize the
expected total score in an office pool. We have applied
these models to mens’ college basketball tournaments,
and have been able to correctly predict the winners in
about 58% of the games considered. While the mod-
els do not offer great improvement over the simple
strategy of picking the seeds when the objective is to
maximize the number of correctly predicted winners
in a tournament, the models did perform well when
a more complicated scoring scheme was considered.
This seems sensible to us, in that the value of opti-
mization should increase as the trade-offs induced by
a scoring scheme become increasingly complex.
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Appendix: Evaluating the Variance of
the Total Score for Random and
Markov Tournaments

Example A.1. A Random Tournament. Consider again the
random tournament with �rg	vrg
= 1 ∀r�g, and let � 2

k denote the
variance of the number of correctly-called wins in a tournament
with k rounds. As with the mean number of correct predictions,
the variance of the number of correctly-called wins in subtour-
naments of equal size will be equal across subtournaments, and
there is no dependence on prediction strategy (so � 2

r−1�2g−1	v
 =
� 2
r−1�2g	v
= � 2

r−1 in Equation 3.8). The variance of Wrg	vrg
 simply
equals 2−r 	1−2−r 
 in the random tournament. Also, note that the
outcomes of all games in the subtournament crowned by game
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2g−1 in round r−1 are independent of the outcomes of all games
in the subtournament crowned by game 2g in round r − 1 (see
Figure 1), rendering Cov	Tr−1�2g−1	v
�Tr−1�2g	v

= 0 for the random
tournament.

Now, the team vrg predicted to win game g in round r must
emerge from either of the subtournaments crowned by games 2g−
1 (vrg ∈ �	r − 1�2g− 1
) or 2g (vrg ∈ �	r − 1�2g
) in round r − 1.
Suppose vrg ∈ �	r − 1�2g − 1
. Then in the random tournament,
Wrg	vrg
 is independent of Tr−1�2g	v
 because the probability that
vrg wins game g in round r does not depend upon any of the
outcomes in the subtournament played by teams from the set
�	r−1�2g
. Consequently, Cov	Tr−1�2g	v
�Wrg	vrg

= 0 in this case.
Alternatively, if vrg ∈ �	r−1�2g
, then Cov	Tr−1�2g−1	v
�Wrg	vrg

=
0 by symmetry.

Without loss of generality, then, suppose that vrg ∈ �	r−1�2g−
1
 and hence Cov	Tr−1�2g	v
�Wrg	vrg

 = 0. The remaining term to
consider from Equation 3.8 is

Cov	Tr−1�2g−1	v
�Wrg	vrg

= E	Tr−1�2g−1	v
Wrg	vrg

−
�r−1

2r
� (A.1)

where we have used the notation �r−1 (see Equation 3.5) to denote
the expected number of correct predictions in a random tourna-
ment with r−1 rounds, and recalled that the probability any round
r prediction is correct is given by 2−r in the random tournament.
To evaluate E	Tr−1�2g−1	v
Wrg	vrg

, note that whichever team is
selected to win game g in round r , that same team must have been
selected to win r − 1 previous games within the subtournament
crowned by game 2g− 1 in round r − 1. Hence, for any game h
in round j < r where vjh = vrg in this subtournament, Wjh	vjh
 and
Wrg	vrg
 are dependent, and

PrWjh	vjh
= 1�Wrg	vrg
= 1� = PrWrg	vrg
= 1�= 1
2r

	for vjh = vrg
� (A.2)

The outcomes of all other games in this same subtournament are
independent of Wrg	vrg
, and thus for vjh �= vrg we have

PrWjh	vjh
= 1�Wrg	vrg
= 1�= 1
2j+r

	for vjh �= vrg
� (A.3)

Substituting Equations A.2–A.3 into Equation 3.2 and taking expec-
tations yields the result

E	Tr−1�2g−1	v
Wrg	vrg

=
r−1

2r
+

r−1∑
j=1

2r−j−1 −1
2j+r

� (A.4)

Collecting all of the results of this section and returning to
Equation 3.8 we obtain the recursion

� 2
r = 2� 2

r−1 +
1
2r

(
1− 1

2r

)

+2

{
r−1

2r
+

r−1∑
j=1

2r−j−1 −1
2j+r

− 2r−1

3

(
1− 1

4r−1

)
1
2r

}
(A.5)

for r = 1�2�3� � � � and � 2
0 = 0. This solves to yield

� 2
k = 20

63
2k− 6k−1

9
1
2k

− 3
7

1
4k

for k = 1�2�3� � � � � (A.6)

Note that as the number of rounds k grows, � 2
k → 	20/21
�k =

�k/1�05. The overall variability in the total number of correctly
predicted wins is thus slightly less than Poisson for the random
tournament.

Example A.2. A Markov Tournament. Establishing a recur-
sion for the variance of the total score � 2

rg	v
 for a Markov
tournament is more difficult. First, note that as in the random tour-
nament, the random variables Tr−1�2g−1	v
 and Tr−1�2g	v
 are inde-
pendent, for the outcome of any game between teams in the set
�	r−1�2g−1
 is independent of the outcome of any game between
teams in the set �	r−1�2g
 via the Markov assumption. All of the
difficulty emerges in evaluating the last two terms of Equation 3.8.

Without loss of generality, suppose that vrg = vr−1�2g−1 for all
rounds in the tournament, for one can always relabel the tourna-
ment bracket to ensure that this condition holds without chang-
ing the assignments of which teams can play which other teams.
We have already shown how to compute the probabilities �rg	vrg

and hence the expected subtournament scores �rg	v
 for a Markov
tournament in Equations 3.7 and 3.3. Define the quantities b+rg	v

and b−rg	v
 as

b+rg	v
= E/Tr−1�2g−1	v
�rg	vrg
Wrg	vrg
0� (A.7)

and

b−rg	v
= E/Tr−1�2g	v
�rg	vrg
Wrg	vrg
0� (A.8)

With this notation, we have

Cov	Tr−1�2g−1	v
��rg	vrg
Wrg	vrg



= b+rg	v
−�r−1�2g−1	v
�rg	vrg
�rg	vrg
� (A.9)

and

Cov	Tr−1�2g	v
��rg	vrg
Wrg	vrg



= b−rg	v
−�r−1�2g	v
�rg	vrg
�rg	vrg
� (A.10)

Because all the computations of this section are contingent on
a given prediction strategy v, we will drop explicit dependence
upon vrg and v in the notation to conserve space except where
required to avoid confusion. Consider first the computation of b+rg
(= b+rg	v
). From Equation 3.2 we have

b+rg = E

[
�rgWrg

r−1∑
j=1

2r−j−1	2g−1
∑
h=2r−j 	g−1
+1

�jhWjh

]

=
r−1∑
j=1

2r−j−1	2g−1
∑
h=2r−j 	g−1
+1

�rg�jhPrWrg=1�Wjh=1�

=
r−2∑
j=1

2r−j−1	2g−1
∑
h=2r−j 	g−1
+1

�rg�jhPrWrg=1�Wjh=1�

+�rg�r−1�2g−1 PrWrg=1�Wr−1�2g−1 =1�� (A.11)

Now, note that PrWrg = 1� Wr−1�2g−1 = 1� = PrWrg = 1� = �rg ,
because vrg = vr−1�2g−1, and for a correct prediction to occur in
game g of round r , a correct prediction must also occur in game
2g−1 of round r−1. Second, note that

PrWrg = 1�Wjh = 1�

= PrWrg = 1�Wr−1�2g−1 = 1�Wjh = 1�

= PrWrg = 1�Wr−1�2g−1 = 1�Wjh = 1�PrWr−1�2g−1 = 1�Wjh = 1�

= �rg
�r−1�2g−1

PrWr−1�2g−1 = 1�Wjh = 1�� (A.12)
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The last result follows since Wrg is conditionally independent of
Wjh given that Wr−1�2g−1 = 1. Inserting these results into equation
A.11 we obtain the recursion

b+rg = �rg
�r−1�2g−1

�rg
�r−1�2g−1

r−2∑
j=1

2r−j−1	2g−1
∑
h=2r−j 	g−1
+1

�r−1�2g−1�jh

× PrWr−1�2g−1 = 1�Wjh = 1�+�rg�r−1�2g−1�rg

= �rg
�r−1�2g−1

�rg
�r−1�2g−1

	b+r−1�2g−1+b−r−1�2g−1
+�rg�r−1�2g−1�rg� (A.13)

It remains to evaluate b−rg . While team vrg ∈ �	r −1�2g−1
, all
of the teams picked to win game h of round j < r in Equation A.8
are in the set �	r−1�2g
. In this case we note that

PrWrg = 1�Wjh = 1�

= PrWrg = 1�Wr−1�2g−1 = 1�Wjh = 1�PrWr−1�2g−1 = 1�Wjh = 1�

= ∑
�∈�	vrg �r


pvrg �� PrVr−1�2g = ��Wjh = 1��r−1�2g−1�jh� (A.14)

For both vrg and vjh to be correct predictions, (i) team vrg must
win game 2g− 1 in round r − 1, (ii) team vjh must win game h
in round j, and (iii) in game g of round r , team vrg must defeat
the victor of game 2g in round r −1 (team Vr−1�2g). However, the
probability that any particular team � ∈ �	r−1�2g
 wins game 2g
must be assessed conditionally on the event Wjh = 1. In stating this
result, we note that the random variables Wr−1�2g−1 and Wjh are
independent (because they refer to games in disjoint subtourna-
ments). The conditional probabilities PrVr−1�2g = ��Wjh = 1� them-
selves can be evaluated via Equation 3.7 after setting pvjh�m = 1 for
all m∈ �	j�h
\vjh (and pm�vjh = 0 for all m∈ �	j�h
\vjh). Substituting
into Equation A.8 we have

b−rg =
r−1∑
j=1

2r−j g∑
h=2r−j−1	2g−1
+1

�rg�jh PrWrg = 1�Wjh = 1�

=
r−1∑
j=1

2r−j g∑
h=2r−j−1	2g−1
+1

�rg�jh
∑

�∈�	vrg �r

pvrg ��

× PrVr−1�2g = ��Wjh = 1��r−1�2g−1�jh� (A.15)

Substituting Equations A.13 and A.15 into Equations A.9 and A.10,
and further substituting into Equation 3.8 yields a recursion for
calculating the variance of the total score � 2

rg	v
 = Var	T 	v

 for
any given prediction strategy v. Note that in using this recursion,
the initialization b+rg = b−rg = 0 for r = 0�1 (and associated g values)
must be used. Also note that the probabilities �rg and conditional
probabilities PrVr−1�2g = ��Wjh = 1� are built recursively, easing the
implementation of this computational scheme.
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