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It is evident that the primes are randomly distributed but,
unfortunately we don't know what 'random' means.

R.C. Vaughan

In Chance News 10.10 Dan Rockmore wrote Chapter 1 of our story Chance in the Primes. This story is intended
to help our readers understand Peter Sarnak's popular exposition of the Riemann Hypothesis. In Chapter I Dan
gave background material to help in understanding Sarnak's history of prime number theory given in the first part
of his lecture. This chapter, written by Laurie is a bit of a digression from Sarnak's talk and provides additional
examples of how chance has been used in the study of prime numbers. In the the next chapters we Dan will return
to Sarnak's talk and explain basic concepts of quantum theory and random matrices and how they are related to a
new approach to proving the Riemann Hypothesis.

The prime numbers are a deterministic sequence of numbers and so it is worth thinking about why probability
might given insight into the primes.

When our colleague Peter Doyle was a boy he used to go for walks with his friend Jeff Norman using the digits of
p to decide which way to go when they came to an intersection -- they had memorized about the first 1000 digits.
It might have occurred to them to ask: when they started at Peter's home, what is the probability that we they will
eventually return to his home? If they had heard of Polya's theorem that a random walk in one or two dimension
will return to its starting point, they might have felt more confident that they would return home even though
their walk was not determined by a chance process.

With the introduction of random number generators, we have become quite used to using a deterministic
sequence of numbers to illustrate the basic theorems of probability. We could even use the first billion or so digits
of p to beautifully illustrate the law of large numbers or the central limit theorem. But with the study of primes,
we want to go the other way. We want to use knowledge about a chance process to better understand the primes
just the way that Jeff and Peter might have learned something about their walk from Polya's theorem.

Our discussion in this chapter will show ways that people have tried to get new information about the primes by
using known theorems or proving new theorems about related chance processes. This is a very tricky business
and we start with an example to show that we can easily be tricked if we are not careful.

A probabilistic proof of the Prime Number Theorem?



Here is a way to try to prove the prime number theorem using probability. Recall that the prime number theorem
states that p(x), the number of primes less than or equal to x, is asymptotically n/log(n). Assume that we choose a
number X at random from 1 to n. Then Prob(X) is prime) = p(x)/n so we can state the prime number theorem as:

If X is not prime it must be divisible by a prime less than or equal to sqrt(n). Since every kth number is is divisible
by k the probability that X is divisible by k is 1/k. Thus, the probability that X is prime is the probability that it is
not divisible by any prime less than or equal to the sqrt(n). For example, the sqrt(200)) = 14.14.. So

Probability X is prime = (1-1/2)(1-1/3)(1-1/5)(1-1/7)(1-1/11)(1-1/13) = .192.

Thus to prove the prime number theorem we must prove that:

where p is a prime number. But Merten proved that:

where g=.57729... is Euler's constant and so

and so our probabilistic proof gives the wrong answer! We could have already seen that our product formula was
wrong by checking our answer for n = 200. Since p(x) = 46, Prob(X is prime) = 46/200 = .23 and not .192 that
our product formula gave us. There are two things wrong with our calculation. First, while it is true that half the
numbers from 1 to 200 are divisible by 2, it is not true that 1/3 are divisible by 3. The number divisible by 3 in the
first 200 numbers is the integer part of 200/3 = 66. Thus only 33% of the first 200 numbers are divisible by 3
rather than 33.333..% we assumed.

Secondly, like our students we have assumed that we can simply multiply probabilities to find the probability that
several events are all true. Let's see if the events E = "X is divisible by 2" and F = "X is divisible by 3" are
independent events. This is true if n is divisible by 2 and 3. For example, if n = 12, there are 6 numbers divisible
by 2, 4 numbers divisible by 3, and 2 numbers divisible by both 2 and 3. Thus P(E) = 1/2, P(F) = 1/3 and P(E and
F) = 1/6, so P(E and F) = P(E)P(F) = 1/6 and E and F are independent. However, if n = 13, then P(E) = 6/13, P(F)
= 4/13 and P(E and F )= 2/13 which is not equal to P(E)P(F) = 24/169. Thus E and F are not independent.

One might hope that asymptotically these two problems would disappear but Merten's result shows that this is
not the case. This is also illustrated by the following exact calculations:



The density of prime numbers.

In an interesting article, "Harold Cramer and the distribution of prime numbers" Scandanavian Actuarial J. 1
(1995), 12-28 ), Andrew Granville writes that Gauss, in a letter to Encke, on Christmas Eve 1947, said:

As a boy I considered the problem of how many primes there are up to a given point. From
my computations, I determined that the density of primes around x, is about 1/log(x).

What does "the density of primes around x is about 1/log(x)" mean? If p(x) is a density function for a chance
experiment, we think of p(x) as the probability that the outcome is in an interval [x, x + Dx] where Dx is small
compared to x. But f(x) =1/log(x) is not a probability density since its integral over the positive numbers is
infinite. However, we can do something similar to what we do for a probability density.

Let D(x) be a function of x that goes to infinity slower than x, i.e., x + D(x) is asymptotically x. Then we will show
that the prime number theorem implies that the proportion of numbers in the interval [x, x + D(x)] that are prime
is asymptotically 1/log(x). Thus, the probability that an integer chosen at random in the interval [x, x + D(x)] is
prime is approximately 1/log(x).

Recall that the Prime Number theorem states that

.

Here p(x) is the number of primes less than or equal to x. The proportion of numbers in the interval [x, x + D(x)]
that are prime is(p(x + D(x)) - p(x))/D(x). We need to show that the ratio of this to 1/log(D(x)) approach 1 as x
approaches infinity. But

as was to be proven.

We illustrate this approximation for D(x) = sqrt(x).

n D(x) Interval

number
of

primes
in the

interval.

probability
that a

randomly
chosen integer
in the interval

is prime

approximate
probability
1/log(D(x))

ratio of
exact to

approximate
probability

100 10 [100, 110] 4 .4 .217147 1.8421
10,000 100 [10,000, 10,100] 11 .11 .108574 1.01314
100,000 1,000 [100,000,  101,000] 75 .075 .0723824 1.03616



1,000,000 10,000 [1,000,000,1,010,000] 551 .0551 .0542868 1.01498
10,000,000 100,000 [10,000,000,  10,100,000] 4306 .04306 .0434294 .991493

100,000,000 1,000,000 [100,000,000,
1,01,000,000] 36249 .036249 0361912 1.0016

Here is an application of this result. The success of one of the modern encryption methods rests on the fact that it
easy to find two 200 digits prime numbers but, given the product of these two numbers, it is extremely difficult to
factor this product to recover the two prime factors. We shall explain how this fact is used to obtain a secure
method of encryption later. Here we will show why it is easy to find 200 digit primes.

Let x = 10^200 and Dx = sqrt(x) = 10^100. Then we have just shown that, if we choose one of these numbers at
random, the probability that it is prime is approximately 1/log(Dx) = .004.. . Thus if we choose 250 such numbers
we should expect to get at least one prime number. So this is a practical way to find a 200 digit prime. We used
Mathematica to choose 400 random 200-digits numbers and then to test them for primality. We found 2 prime
numbers and multiplied them together to obtain the number:

478857666143822033324269962220157253835020621786762268629403225926037628569395
230189709910293445147137522991535640944560209169903096737299891297201537052227
747108164393721763692326209734550472598504487065520874179490318662382292423893

140419161783580414731479843707556332612818564502522206694081650171127530811923
067907784340544294144952881559230521817255464542588707573028382273761890209597.

We will give a year's subscription to Chance Magazine to the first person who tells us what our prime numbers
were.

We should confess that we do not have complete confidence that our 200 digit numbers are prime. We identified
them using Mathematiac's function PrimeQ to test primality which is known to be accurate only up to 10^16 so
could conceivable be wrong for 200 digit numbers. In practice, 200 digit prime numbers used for encryption are
chosen by a method that produces numbers called "probably-primes" which are known to be prime with a very
high probability. We will discuss this method later.

Cramer's random primes.

Here is a table of the first 225 prime numbers

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53 59 61 67 71 73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173 179 181 191 193 197
199 211 223 227 229 233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349 353 359 367 373 379
383 389 397 401 409 419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541 547 557 563 569 571
577 587 593 599 601 607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733 739 743 751 757 761
769 773 787 797 809 811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941 947 953 967 971 977
983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187
1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291
1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427



 

In his lecture on the Riemann Hypothesis, Jeffrey Vaaler pointed out that it is hard to see any pattern in these
numbers. This apparent randomness in the distribution of prime numbers has suggested to some that, even
though the primes are a deterministic sequence of numbers, we might learn about their distribution by assuming
that they have, in fact, been produced randomly. An interesting example of this approach appeared in the 1936
paper of Harold Cramer "On the order of magnitude of the difference between consecutive prime numbers," Acta.
Arithmetic, 2, 23-46. Of course, we know Cramer from his work in probability and statistics and, in particular,
from his classic book "Mathematical Methods of Statistics" which is still in print. However, his thesis and early
papers, were in prime number theory. 

Cramer considered the following very simple chance process to investigate questions about the prime numbers.
He imagined a sequence of urns U(n) for n = 1,2,... . He puts black and white balls in the urns in such a way that if
he chooses a ball at random from the kth urn, it will be white with probability 1/log(k). Then he chooses 1 ball
from each urn and calls the numbers for which the balls were white "random primes." Note that, unlike true
primes, random primes can be even numbers. In his paper that we mentioned above, Granville describes a
number of results that Cramer proved for his random primes that led to a better understanding of the true
primes. We shall illustrate this in terms of a result that led to a conjecture for the real primes that has not yet
been settled.

In his earlier research, Cramer studied the gaps that occur between prime numbers. A gap in the sequence of
prime numbers is the difference of two successive primes. Such gaps can be arbitrarily large. We can see this as
follows: 4! = 4x3x2x1. Thus the integers 4!-2, 4!-3, 4!-4 are not prime so we have a gap of at least 3. More
generally, n! - j are not prime for j = 2 to n so, for any n, there is a gap of at least n-1. We say that a gap is a
"record gap" if, as we go through the sequence of primes, this gap is larger than any previous gap. For example,
for the first 10 primes 2, 3 ,5 ,7, 9, 11, 13, 17, 19, 23, 29 the gaps are 1, 2, 2, 2, 2 2, 4 ,2, 4, 6. So the first four record
gaps are 1, 2, 4, and 6. Cramer, using the Borel-Cantelli lemma, proved that for these random primes the nth
record gap is asymptotically the (log(p))^2 where p is the starting prime for the gap.

We simulated Cramer's chance process to obtain a sequence of a hundred million pseudo-random primes. In this
sequence there were 19 record gaps. Here is a graph of the ratios of these record gaps, normalized by dividing by
the square of the initial prime in the gap. According to Cramer's conjecture this graph should approach 1.

Let's compare this with a with a graph of the record gaps for real prime numbers. Record gaps are maintained by
Thomas Nicely. There have been 63 record gaps found todate, the largest of which is 1132 which starts at the
prime 1693182318746371. The (log(1693182318746371))^2 = 1229.58 so this record gap normalized is



1132/1229.58 = .92 which is close to the limiting ratio of 1 as Cramer conjectured. Here is a graph of the 63
normalized record gaps. 

 

Note that the evidence for Cramer's conjecture looks more convincing for the true primes, for which it has not
been proven, than for the random primes where it has been proven.

What about small gaps? Except for the first two prime numbers (2,3) the smallest gap that could occur is 2. When
this occurs we say we have a "twin prime". One of the most famous unsolved problems in prime number theory is:
are there infinitely many twin primes? Let's see if this is true for Cramer's random primes. Since random primes
can be even, it might be more natural to consider "twin primes" as pairs n, n+1 where n and n+1 are random
primes. Then, since the events "n is a random prime" and "n+1 is a random prime" are independent, the
probability that the pair n,n+1 are twin primes is 1/log(n)log(n+1). Since the sum of these probabilities diverges,
the Borel-Cantelli lemma implies that, with probability 1, we will have infinitely many twin random primes. Note
that there also will be infinitely many pairs of the form n, n +k for any integer k.

The Eratosthenes sieve.

A more sophisticated definition of random primes was introduced later by the philosopher David Hawkins
(Hawkins, D. 1958. Mathematical sieves. Scientific American 199(December):105). His method of generating
random primes was suggested by a technique introduced by Eratosthenes of Cyrene (275-194 BC) called the
"Eratoshenes Sieve."

The Eratosthenes sieve is a way to find all the primes less than or equal to n. We illustrate how the sieve works for
n = 200 using an applet that you can find here.

If p is a prime between 1 and n it must be divisible by a prime less than or equal to the square root of n. For n =
200 the Eratosthenes sieve proceeds by successively removing numbers divisible by the primes less than the
sqrt(200) = 14.1, i.e., by the primes 2,3,5,7,11,13.

We start with a table of the integers from 2 to 200.



We then proceed to "sieve out" all the numbers divisible by the first prime number 2.

Next we sieve out all numbers greater than 2 that are divisible by 3 obtaining:



We continue sieving out divisors of 5,7,11, and 13 and the resulting numbers are the primes in the first 200
numbers.

We see that there are 46 such prime numbers.

The Eratotshenes Sieve suggested to David Hawkins a new way to generate random primes. He defines his
process by a probability sieve. Start with the integers beginning with 2:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 ,22, 23,... .



Now throw out each number with probability 1/2. Suppose this leaves us with

3, 4, 5, 7, 10, 11, 13, 14, 17, 18, 19, 23,... .

Then the first number 3 is the first random prime. Now go through this sequence throwing out each number
greater than 3 with probability 1/3 leaving for example,

3, 5,7,10,11... .

Then 5 is the next prime number. Next throw out each number greater than 5 with probability 1/5. Continue in
this way to obtain a sequence of random primes.

Of course, it is easy to simulate random primes. Here are the primes less than or equal to 1000 that resulted from
one such simulation:

2 4 6 12 16 19 26 28 30 34 37 41 43
44 52 57 60 61 68 70 75 81 83 88 89 91
94 100 103 105 107 111 117 130 131 134 135 137 146
152 157 163 172 173 174 175 176 193 198 205 208 211
215 218 222 223 228 241 256 257 263 269 271 287 290
291 298 302 313 322 324 352 358 377 380 382 384 389
398 412 420 429 431 433 435 444 451 474 485 492 495
497 500 529 546 562 564 568 571 583 599 602 603 610
625 626 629 640 644 661 663 669 681 693 699 706 709
719 733 738 742 752 767 782 792 802 810 814 839 840
861 869 894 905 907 910 911 912 919 923 924 927 938
940 962 966 970 981 982

 

Hawkins and others proved a number of theorems for Hawkins' random primes similar to well- known theorems
about the true prime numbers. For example,Wunderlich showed that, with probability one, Hawkins' random
primes satisfy the prime number theorem. That is, the number of random primes less than n is asymptotically
n/log(n). In our simulation there are 149 random primes less than 1000. The prime number theorem would
predict 1000/log(1000) = 144.77 which is closer than the result for real primes but, of course, both estimates are
meant to be for large n.

Since, for random primes, even numbers can be prime, a natural "twin prime" theorem would be that there are
infinitely many pairs of random primes of the form k, k+1. Wunderlich showed that, with probability one,
Hawkins' random primes have infinitely many twin primes, i.e., infinitely many pairs k, k+1. He also showed that,
with probability one, the number of such twin primes less than n is asymptotically n/(log n)^2.

We can get a heuristic estimate for this same result for true primes by assuming that the occurrences of a twin
prime at n and n+2 are independent. Then, using the prime number theorem, the probability that n, n+ 2 for odd
n is a twin prime is approximately 1/log(n)xlog(n+2). Thus we would expect the number of twin primes less than
n, p2(x), to be asymptotically n/(log n)^2 . Hardy and Wright gave this probabilistic argument but then gave an
improved estimate:



where c = 1.320... . This estimate is remarkably good. From this web site we find an interesting discussion of twin
primes and the following table comparing the Hardy Wright estimate with the true numbers of twin primes for
values of n for which the number of twin primes are known todate:

n Twin primes < n Hardy Wright
estimate Relative error

10 2 5 150
100 8 14 75
1000 35 46 31.43
10000 205 214 4.39
100000 1124 1249 11.12
1000000 8169 8248 .97
10000000 58980 58754 -.38
100000000 440312 440368 .013
1000000000 3424506 3425308 .023
10000000000 27412679 27411417 -.0046
100000000000 224376048 224368865 -.0032
1000000000000 1870585220 1870559867 -.0013
10000000000000 15834664872 15834598305 -.00042
100000000000000 135780321665 135780264894 -.000042
1000000000000000 1177209242304 1177208491861 -.0000064
5000000000000000 5357875276068 5357873955333 -.0000025

Probability and the Riemann Hypothesis.

Of course, it is natural to ask if there is a chance process that can shed light on the truth or falsity of the Rieman
Hypotheses. We will illustrate this in terms of an approach suggested by von Sternach in 1896.

Recall that for the s > 1 the zeta(s) can be expressed as the infinite series

The reciprocal of the zeta function, is given by

where m(n) is the Moebius function defined by m(n) = 0 if n if is divisible by a square and otherwise m(n) = 1 if
the number of prime factors of n is even and -1 if the number of prime factors is odd.

Here are the values of m(n) for n = 1 to 20



n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
m(n) 1 -1 -1 0 -1 1 -1 0 0 1 -1 0 -1 1 1 0 -1 0 -1 0

These digits look rather random and might be thought of as the record of a drunkard who walks down a street,
and at the nth corner either decides to rest (m(n) = 0), to go ahead one block (m(n) = 1) or go back one block
(m(n) = -1). We shall call such a walk a "prime walk." Of course this is similar to the "random" walk that Jeff and
Peter took using the digits of p.

We denote by g(n) the sum of the first n values of the Moebius function. Thus g(1) = 1, g(2) = 0, g(3) = -1, g(4) = -
1, g(5) = -2, g(6) = -1 etc. Then g(n) tells us after time n how far our prime walker is from home.

The first person to suggest comparing the prime walk with a random walk was von Sternach in 1896 and you
should click here and read Peter Doyle's two page translation of his description of this random walk before going
on with our discussion.

Note that von Sternach calculated the first 150,000 values of g(n).(How would you like to compute 150,000
values of g(n) without a modern computer?) He found that m(n) was non-zero about a proportion 6/p^2 = .608
of the times.. The proportion of 1's and -1's was about the same. Thus for his random walk Sternach chose the
probability of a 0 to be 1-6/p^2 = .392...and the probabilities for a 1 and for a -1 to be 3/p^2 = .30399... to make
the sum 1.

We will make the same choices. But first we will show that Sternach's estimate holds for the limiting proportion
of 0's in the prime walk. Let's count the the number of integers k between 1 to n for which the the m(k) is -1 or 1.
This will be the case if k is not divisible by the square of a prime number--i.e., is square-free. The fraction of such
numbers will be the probability that a randomly chosen integer X between 1 and n is square-free. Using the same
probability argument we used for our probabilistic proof of the prime number theorem we estimate the
probability that a random number from 1 to n is square free by:

Recall that the product formula for zeta(s) for s > 1 is:

Thus the probability that X is square free should approach 1/z(2) = 6/p^2 = .607927. But we have again assumed
independence and that got us in trouble trying to give a probabilistic proof of the prime number theorem.
However, as the following computation shows this time the it appears to work.



We can also compute the exact proportion of square free numbers but not for such large n. Here is a comparison
of the exact values and the values obtained by our product formula for values of n up to a million.

The true probability that a random number X from 1 to n is square free does appear to approach 6/p^2 as
predicted by our by our product formula. The reason that this approximation works here and did not for the
prime number theorem, is probably because for the prime number theorem we were trying to estimate the
probability that X is prime. But this probability approaches 0 and n tends to infinity. The probability that a
random number is square-free approaches a non-zero limit.

Thus, we have convinced ourselves that Sternach was correct in his choice for the probability of a 0. This will
determine the probabilities for -1 and 1 if these asymptotic values are equal. Evidently this is true but hard to
prove, being equivalent to the prime number theorem! Of course we can also check this claim by computing these
proportions for large values of n. Here are the results of such a computation.

N Proportion. of -
1's Proportion of 0's Proportion. of 1's

10 .4 .3 .3
100 .30 .39 .31
1,000 .303 .392 .305
10,000 .3053 .3917 .3030
100,000 .30421 .39206 .30373
1,000,000 .303857 .392074 .304069
10,000,000 .3039127 .3920709 .3040164
100,000,000 .30395383 .39207306 .30397311
1,000,000,000 .303963673 .392072876 .303963452



Limiting value .3039635509.. .3920728981 .30396355092..

These computations are pretty convincing.

Now we can apply standard probability theorems to our random walk..

The Riemann Hypothesis would be true if one could prove that the lim sup |g(n)| is less than than cxn^(1/2+e)
for positive constants c and e -- see Edwards p. 261. That is, if we could prove that our prime walker would not
stray to far from home. The iterated logarithm assures us that this is true with probability one for our random
walk. Thus, if this is a good model for the behavior of the values of g(n). we can consider this as evidence that the
prime number theorem is true.

Sternach included a beautiful graph of 1500,00 values of g(n) that extended over 4 folded pages. He included
graphs of sqrt(n) and - sqrt(n) and remarked that the graph of g(n) never got even half way up to these curves. He
commented that "if a conjecture is indicated it would be that |g(n)| < sqrt(n) for all n". However, Odlyzko and
Riele proved in 1985 that there are infinitely many values of n for which g(n) > 1.06 sqrt(n), though they did not
believe that such an example would be found for x < 10^20 or possibly even 10^30. They concluded that they did
not believe that there would be any c such that |g(n)| < c sqrt(n) for all n. Of course, this is also suggested by the
random walk model. But is the random walk model a good model for g(n)?

Sternach's graph was too big for us to handle, but with modern computers we can make graphs for the first
million steps in the prime walk. Also Sternach could not simulate his random walk since he would have to have
rolled his die 150,000 times! Here are graphs of the prime walk (the upper picture) and a random walk (the
bottom picture).



We note that the graphs look quite different which suggests that our prime walk does not behave like a typical
sequence in our random walk. There is significantly less variation in the prime walk and it appears to be a kind of
oscillatory behavior. The smaller variation was also suggested by Sternach.

Peter Kostelec computed the first first trillion values of g(n). Here is a plot of g(n)/sqrt(n) for a sample of size
8192 chosen uniformly on a logarithmic scale from n = 10^2 to n = 10^12.

If Sternach had just computed to a trillion he would have found that his conjecture that |g(n)| < sqrt(n). is still
o.k. However, in this range there are values where g(n) > 1/2sqrt(n) and less than -1/2sqrt(n).

We estimated what the variation should be for a stochastic model for the g(n)'s as follows. We chose a sample of
size 10,000 on a log scale of the first billion values of g(n) and normalized the values of g(n) at these points by
dividing by sqrt(n). The mean of these normalized values was -.0244452 and the standard deviation .176032.

For the random walk model each step has expected value 0, variance 6/p^2 = .6079.. and standard deviaiton
.7796.. So the sum of the steps normlized by dividing by sqrt(n) had mean 0 and standard deviation .7796. Thus
the random walk model is certainly not a good way to model g(n).

We also looked at the g(n)/sqrt(n) for our sample. Here is a histogram of these values with a normal plot
superimposed.

The fit looks pretty good but this is a good example where you can see that the fit very much depends on the bin
sizes you choose.

Peter Doyle also pointed out that it is to be expected that there should be less variation in the prime graph because
of known constraints on the values of g(n). For example



Here when g(n)/i is not an integer we mean the largest integer less than g(n)/i. Here is an example of this
relation.

n 1 2 3 4 5 6 7 8 9 10
m(n) 1 -1 -1 0 -1 1 -1 0 0 1
g(n) 1 0 -1 -1 -2 -1 -2 -2 -2 -1
g(r(10/n)) -1 -2 -1 0 0 1 1 1 1 1

If we add the values of g(n) for 1` = 1 to 10 we do get 1.

Thus the prime walker must walk in such a way that this restriction is always satisfied whereas our random
walker can wander as he pleases.

Our conclusion from all this is that Sternach's random walk is not a good model for the values of the moebius
function. but perhaps the process of trying to make it a better random walk will help in understanding why the
prime walk really can't wander too far from home.

If we could explain the oscillatory behavior, perhaps we would understand why people talk about the music of the
primes.

We thank Peter Kostelec and Charles Grinstead for the Mathematica computations and graph used in this
discussion.

The primes and security.

Finally we consider an example of the use of probability in the study of prime numbers which has nothing to do
with the Riemann Hypothesis but is an example of chance in the primes that has a more obvious application to
our daily life. This is the problem of encrypting messages. The problem of encoding messages has a long history
and you can read about this here.

We shall discuss this topic in terms of a very simple problem. Alice wants to send Bob his grade in such a way
that if someone reads Bob's e-mail they will not be able to determine his grade. She gives grades A,B,C,D,E, or F
and wants to code them before sending them to her students. A simple method, that goes back to the way Caesar
communicated with his troops, is to encode each letter as a different letter. For example, encode each letter as the
letter 3 positions further along in the alphabet, starting at A again when F is reached. If Bob got an A she would
send him a D, if he got a B she would send him an E, etc. The amount of the "shift" (in this case it is 3) acts as a
"key" to the code and the way to assign the letters using this key is called the "codebook". Thus Alice's key is 3 and
her "codebook" is

A B C D E F 
D E F A B C.

When Bob gets the message he will decode it by his codebook

D E F A B C
A B C D E F

Thus if Alice sends Bob an E he will decode it as a B.

Henry is intercepting the student's mail and wants to decode the grades. In other words he wants to know what
Alice has used for a key. Well, if Henry intercepts the grades of everyone (or even a reasonable fraction of the
class), then Henry could almost surely figure out the shift by looking at the distribution of the grades that he
intercepted and then shift the coded sequence back to make it look more reasonable. (Presumably, in a big class



the grade distribution should be bell-curve like with a median around C, assuming no grade inflation!) Having
done this he would probably recognize Alice's scheme of just shifting the grades.

The problem of the enemy being able to determine the key by intercepting messages has haunted those who used
codes for centuries. The story of the breaking of the German enigma code used in world war II is a fascinating
story which you can read about here.

The recognition that it would be easy for internet messages to be intercepted led to the development of coding
methods that would make it difficult to decode the message sent, even if the encoded messages were intercepted.
An example of this is the RSA code named after its authors Ronald Rivest, Adi Shamir, and Leonard Adleman. We
will explain this method for coding messages.

We illustrate the RSA method using our example of Alice sending a grade to Bob. The RSA method is a bit
complicated, but fortunately Cary Sullivan and Rummy Makmur have provided here an applet to show how it
works. We shall follow this applet in our explanation.

We start by choosing two prime numbers, p and q, and computing their product n = pq. To keep things simple,
the applet allows you to pick only small numbers for p and q but, in the actual application of the RSA method, p
and q are chosen to be large primes with about 200 digits so that n has about 400 digits. The reason for this is
that we are going to want the whole world to know n but not p and q. This will work because there is no known
method to factor 400-digit numbers in a reasonable amount of time. Also, our RSA encryption method changes a
message into a number m and will only work if m < n. So unless n is large we are limited in the number of
different messages we can send at one time.

Responding to the applet we choose the two primes p= 7 and q = 11. Then n = pq = 77. Next we use the Euler
function f(n) whose value is the number of numbers less than or equal to x that are relatively prime to n. (Two
numbers are relatively prime if they have no common factors). When n is the product of two prime numbers p,q,
f(n) = (p-1)x(q-1) since there are q multiples of p and p multiples of q that are less than or equal to pq. And in
each of these sets of multiples the number pq is included, so there are exactly p + q -1 multiples of either p or q
less than or equal to pq. Or pq - p - q +1 = (p-1)(q-1) numbers relatively prime to pq. Thus,

f(n) = f(7x11) = 6x10= 60.

Next, the applet finds a number e which is relatively prime to f(n). It chooses the smallest such number which is
7. The number e is called the "exponential key." In mod n arithmetic, x has a multiplicative inverse y if xy =1 mod
n. (Recall that x mod n is the remainder when n is divided by x). To have such an inverse, x and n must be
relatively prime. Since e and f(n) are relatively prime, e has an inverse mod(f(n)) which we denote by d. The
applet finds that d = 43. To check this we note that exd = 7x43 = 301 = 1 mod 60. The numbers n and e are called
"public keys" and can be made publicly available. The number d is called the "private key" and available only to
Bob to decode the message from Alice.

Bob's grade was a B. Alice uses numbers to represent the grades with A = 1, B = 2, etc., so she wants to send the
message m = 2.

Alice encrypts her message m as c = m^e mod n. Thus c = 2^27 mod 77 = 51.

Then since d is the mod n inverse of e, ed = 1 mod n. Thus Bob can determine m by computing c^d mod n. This
works because

c^d mod n = (m^e)^d mod n = m^(ed) mod n = m mod n = m.

Here we have used that m < n.

Well, we still have not mentioned chance. Chance comes in when we try to choose the 200-digit prime numbers p
and q. As we have remarked earlier, standard tests for primality such as the Mathematica's function PrimeQ



cannot handle numbers this big with a guaranteed accuracy. It turns out there is a simple method of determining
numbers with about 200 digits which have an extremely high probability of being random. The method for doing
is suggested by a theorem of Fermat.

Fermat's (Little) Theorem: If p is a prime and if a is any integer, then a^p = a mod p

A number p for which a^p = a (mod p) is called a "probable-prime". By Fermat's theorem every prime is a
pseudo-prime. However not every probable-prime is prime. But if we choose a probable-prime at random it is
very likely to be a prime. Just how likely has been determined by Su Hee Kim and Carl Pomerance. They showed,
for example, that if you pick a random 200-digit probable-prime the probability that n is not prime is less than
00000000000000000000000000385. You can find more precisely what random means here

It is natural to ask how hard it is to test if a 200-digit number x is a probable-prime, is prime. Suppose you are
using base 2. Then we have to see if 2^(x-1) = 1 mod x. Fortunately it is practical to raise 2 to such a high power
by writing it as a product of smaller powers of 2. This is called the method of repeated squaring.

Well, we hope this has given some idea of how chance has been used in the study of the primes. In our future
chapters we shall show how chance is playing a role in one of the current attempts to prove the Riemann
Hypothesis.

 

 


