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Abstract: Parameters for generalized Lotka—Volterra equations, expressed 1s difference equations, have been estimated from
actual data on wolves and their prey. The functional response is represented by a single constant, while the numerical respons®
is expressed as a ratio-dependent limitation on predator abundance. Parameters for the Lotka~Volterra equations were ]
estimated by multiple-regression fits to data on moose (4lces alces) and wolves (Canis lupus) on Isle Royale, and from other
sources. Observed prey—predator ratios are highly variable, but much of the variability may arise from nonequilibrium
conditions. A multiple-prey model has been developed by assuming that utilization rates vary in proportion to relative currest
biomass. If analyses are to be useful, the dynamic, nonlinear nature of predator—prey systems requires that a system of ]
equations be developed, along with extensive series of observations of actual abundances of predator and prey. x
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Résumé : Les paramétres utilisées dans les équations généralisées de Lotka—Volterra, exprimées sous forme d’équations aux
différences finies, ont été estimés & partir de données réelles sur des loups et leurs proies. La réponse fonctionnelle ekt une
simple constante, alors que, dans la réponse numérique, I’abondance des prédateurs dépend du rapport prédateurs—proies. Les
paramétres des équations de Lotka—Volterra ont été estiimés par I'ajustement de régressions multiples 4 des données sur des

Orignaux (4lces alces) et des Loups gris (Canis lupus) &

Isle Royale et d’autres endroits. Les rapports proies—prédateurs

observés se sont avérés trés variables, mais cette variabilité peut provenir de conditions de non-équilibre. Un modéle 3 proies

. multiples basé sur I’hypothése selon laquelles les taux d’

utilisation varient en fonction de la biomasse relative du moment a

été mis au point. La nature dynamique, non lingaire, des systémes prédateurs-proies nécessite un systéme d’équations pour fin
d’analyses appropriées, de méme que des séries de données réelles d’abondance de prédateurs et de proies.’

[Traduit par la Rédaction]
Introduction

Predator—-prey equations have been the subject of consider-
able interest in ecology since the 1920s, but for the larger
vertebrates, much of the treatment has been theoretical, with
little attention given to applications. A good deal of atten-
tion has been paid recently to ratio-dependent predator—
prey interaction theory (Matson and Berryman 1992;

Akcakaya et al. 1995; Abrams 1994; Berryman et al. 1995;
J  Gleeson 1994; Sarnelle 1994), but the examples and experi-

mental tests consider invertebrates, as does most of the theo-
retical work on the subject. There has also been much recent
interest in issues concerning wolf predation in Alaska and
Canada, but I have found it very difficult to examine the
issues substantively (Eberhardt and Pitcher 1992).- This
stems in part from the usual problems with obtaining satis-
factory data, but the limitations have been exacerbated by
the need to deal with a dynamic system with interacting
components. .

Many wildlife problems can be approached with single-
species models, and there is often sufficient stability to per-
mit the use of linear (or log-linear) models (Eberhardt
1987). Quite straightforward statistical analyses then be-
come possible, and the underlying models may not need or
receive much attention. Predator-prey situations require
nonlinear models and may be highly dynamic. Outcomes of
changes, then, cannot be predicted using the kind of logical
analysis that we might apply to single-species situations,
and it is not reasonable to construct a conceptual model of
Possible outcomes in terms of the likely behavior of one of
the interacting predator and prey species.

Consequently, while we may regard the well-known
Lotka~Volterra system of equations as overly simplistic and
thus unrealistic, it may nonetheless be valuable to look at
the problems involved in trying to estimate parameter val-
ues for these models by using actual data. With computer
Simulations now widely used, the objection may be made
tha_t there is no need to work with oversimplified models.
his may well be true. My experience in building computer
Models is that one has to make so many arbitrary decisions
D order to construct a detailed model that it soon becomes
Mpossible to make any kind of logical assessment of the
Suicomes of running the model. If a simple model fails to
Tatch reality, one can usually identify the weak points. Per-
taPS.all that can be expected of such a model, however, is
| 4 it provides a “caricature” of the real world (May et al.

9). If we can identify such a general correspondence

*Ween model outcomes and observed data, it may then
-*come possible to capture and improve the correspondence
"2 more detailed model. The purpose of the present paper

N

is to evaluate a version of the Lotka—Volterra model that can
beappliedtoactual data, and to emphasize some aspectswhich
need furtherattention.

Methods and results

Basic equations ‘
The equations considered here are generalized forms of the
Lotka—Volterra equations, but are more appropriately ex- -
pressed as difference equations (Eberhardt 1987, 1997). Most
of the recent literature identifies two components, the “func-
tional response,” referring to removals from the prey popula-
tion by predators, and the “numerical response” of predators to
prey abundance. A list of potential forms of these two func-
tions was given by May (1981). The notation and basic equa-
tions used here are those given by Eberhardt (1997). The prey
equation is

Vi Y
(1l Vi=Va+n Ve l- a —cH,

where ¥, denotes ungulate prey abundance at time £, H,_,
denotes predator abundance the previous year, X is the asymp-
totic population level of the prey, z is a constant for the gener-
alized logistic equation (Eberhardt 1987), r, is the maximum
rate of increase of prey, and c is the predation rate {number of
prey taken per wolf each year). The predator equation is

2] H,=H, o H, 1|1 ﬁ
(2] T T M —th—-l
where r, is the maximum rate of increase of predators and a
denotes the predator “equilibrium ratio,” i.e., the number of
prey required to support one predator under equilibrium con-
ditions. : .
The difference equations used here are easily implémented
in any of the several computer “spreadsheets.” In plotting
graphs of the outcomes, it is convenient to have the equilib-
rium values for eqs. 1 and 2. These are readily obtained by
setting H,= H, ; and ¥,= V,_; and solving the resulting equa-
tions. This gives

1z
[3] V=K(1——i£), H=aV
1

and the ratio at equilibrium is
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Functional response

The essential feature of the functional response is the per capita
consumption of prey by predators, which is here expressed as
a constant, ¢ (Eberhardt 1997). The main form in recent litera-
ture of a more elaborate function is the Michaelis—-Menton
equation used by Holling (1965) and thus widely known as
Holling’s disk equation.

Numerical response

In eq. 1, in the absence of predators, the prey are limited by a
logistic function. The numerical response of predators to prey
abundance is furnished with a similar function, devised by
Leslie (1948), so the numerical response can be written as

M g =ha=teTy [Vu]

but in this case, the asymptotic value, K, becomes aV,_j, 1.e.,
itis proportional to the current abundance of prey, and r, is the
rate of increase approached by predators when their numbers
are low and prey are very abundant. Given estimates of the
current rate of increase (A,_,), and the predator—prey ratio, the
right side of eq. 4 can be fitted by linear regression, with the
intercept estimating A = 1 +r, and the slope ry/a. Keith (1983)
gave data that can be used in this fashion (Fig. 1).

Isle Royale data

Dr. R.O. Peterson (personal communication) has kindly made
available unpublished wolf and moose data for Isle Royale.
Inasmuch as these data represent one of the longest series
available on moose and wolves, they provide a basis for study-
ing curves using the above parameters. One approach is via
multiple regression. Equations 1 and 2 can be rearranged to
show how parameters are grouped in a multiple-regression fit:

" o
[1] I/t = (1 + 7'1) 171_1 - [’E] V‘t—i - CH-I—l

W\ H>
2] H=( +7~2>I£.1—[%J—Vﬁ-

The multiple-regression equations are constrained to have zero
intercepts, e.g., eq. 2 is y = byx; + byx, with
2

Ht—l
Via’

y=H, X =H,,, Xy = by=1+r,

Ty
and bz = ;

The multiple regressions (Fig. 2) are highly significant (analy-
sis of variance, P < 0.0001), with all coefficients highly sig-
nificant (P < 0.01), but the coefficients have larger standard
errors (given in parentheses below) than might be desirable.
However, it is interesting to compare the coefficients with the
estimates from other sources. For the wolf data we get b;=
1 + r,= 1.255(standard error = 0.10). The value estimated for
b, gives an estimate of a from b, =r,/a=9.105(3.02) and a =
0.255/9.105 = 0.028 wolves per moose, or 36 moose per
wolf, giving 6(36) = 214 deer-equivalents, compared with a=
0.476/0.054 = 8.8 wolves per 1000 deer-equivalents or 114
deer per wolf for Keith’s data (Fig. 1). For moose, b=
1.217(0.055), so ;= 0.217. The second coefficient (b,) in-
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volves K and z, and likely cannot realistically be intel‘preted
(z was arbitrarily set equal to 5.0 on the basis of earlier Studie, |
(Allen 1980; Eberhardt 1987)). The value of 6.32(2.36) for th: !
third coefficient is presumably an estimate of the numbe; of |
moose taken per wolf each year (the predation rate). Eberharg
(1997) estimated 6.9 moose per wolf each year from data in ,
literature.

The use of difference equations as the basis for the multip],.
regression model results in an apparent lag of 1 year betweg,
model outcome and data points (Fig. 2). This is, at least par. |
tially, a consequence of compressing the events of birth ang
death into a single interval, as is necessary in using the differ.
ence equations here.

Prey-predator ratios ‘

Two extensive tabulations of data on ratios of prey to wolves
are those of Fuller (1989, Appendix B) and Messier (1994,
Table 2). Fuller gave the prey abundance in deer-equivalents
per 1000 km? and gave data on various prey species, whereag
Messier reported only data on moose. These data were ana-
lyzed by Eberhardt (1997) and showed no evidence of curvi-
linearity or significant y-axis intercepts. The two sets of data
are pooled here (6 cases of evident duplication of Messier’s
tabulation with data given by Fuller have been dropped). The
multiple-regression estimate of 214 deer-equivalents from the
Isle Royale data agrees well with the pooled data (204 deer-
equivalents) from Fuller and Messier, so the major discrepancy
is with the estimate from Keith’s (1983) data. Because ratios
of variable quantities are difficult to deal with by means of the
usual statistical methods, bootstrapping (Efron and Tibishirani
1993) was used to compare the pooled results of Fuller and
Messier with the estimate from Keith’s data.

Because the regression data (Fig. 1) from Keith (1983) are
based on only 7 observations, “parametric” bootstrapping was
used to assess this data set. Deviations from regression were
randomly sampled with replacement, and corresponding val-
ues of the independent variable were computed for each of
2000 such samples to give percentile confidence limits (Eftron
and Tibishirani 1993). The larger pooled data set (1 = 53) from

_ Fuller (1989) and Messier (1994) was assessed directly by

means of “nonparametric” bootstrapping. That is, 53 random
samples with replacement were taken for each “bootstrap
sample” and the pooled ratio was calculated. The frequency
distributions from the two data sets did not overlap at all, mak-
ing it evident that two different underlying values are involved. |4
Approximate 95% confidence limits for the pooled value (20{4 i
deer-equivalents) were 173-278, while the 95% limits for
the estimate from Keith’s data (114 deer-equivalents) were
88—136.

Steady-state models

Gasaway et al. (1992, Fig. 12), following Messier and Crete
(1985), proposed that moose populations might attain several
distinct equilibrium population levels under wolf predation.
They also reported (Gasaway et al. 1992, Fig. 13) large differ-
ences in actual moose densities between areas where predafors
(wolves and bears) were likely limited by harvesting and areas
where they were lightly harvested. Messier (1994, Fig. 1) pro-
posed similar conceptual models that showed very different
steady-state levels for moose preyed on by wolves. Howevek
he did not propose specific equations for the hypothesize
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ig. 1. Annual rates of increase in the wolf population at various values of the ratio of wolf numbers to prey abundance. Data are from Keith
(1983, Tables 1 and 3)."The standard error of the slope of the regression line is 0.011 and the standard error of the intercept is 0.041. The

| regression line is y=1.476 — 0.0545x.
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B . Fig. 2. Multiple-regression fits to moose (@) and wolf (b) data from Isle Royale supplied by Dr. R.O. Peterson (personal communication).
e | Observed values are shown by the data points and model results by the line. See the text for further details.
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alterfla’tive steady states. Hence, it is worthwhile to consider According to eq. 1, a prey population should follow the
¢ behavior of egs. 1 and 2 when plotted on the coordinate generalized logistic. If a predator population remains at the

%es used by Messier (1994).

equilibrium level given by eq. 3, i.e., if H = aV throughout the
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Fig. 3. The hypothetical rate of increase (eq. 5) of 2 moose population subject to predation (lower curve) and in the absence of predation (upper

curve). The broken line shows the removal rate (ca = 0.21).
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growth of the prey population, then eq. 1 can be rearranged to
give the rate of growth of the prey population as

v, Vit
[5] 7‘,=V—1—1=r1 1= | |~ca
-

Using parameters discussed above, the growth of a moose
population might then proceed as in Fig. 3. Parameters used to
develop Fig. 3 (r= 0.35, ca= 0.21) are those developed by
Eberhardt (1997). '

The present model thus admits only two steady-state con-
ditions: one in the absence of predation and a second, lower
level under predation. Growth of the moose population (Fig. 3)
follows the conceptual model of Messier (1994), but the re-
moval rate due to predation (broken line in Fig. 3) is here
assumed to be constant, as shown by Eberhardt (1997), giving
only one steady-state condition under predation. Messier
(1994, Fig. 1) assumed the predation rate to follow a concave
downward curve, which he claimed would yield various steady
states, depending on how often it intersected the presumed
growth curve for moose.

Multiple-prey models

In many circumstances, more than one prey species is avail-
able to wolves, posing the problem of determining the relative
proportions of prey taken. The simplest assumption would
seem to be that prey are taken in proportion to the relative
biomass available. To examine such a model, the kill rates
have been adjusted according to relative biomass, with one
moose equal to three caribou. Caribou produce only single
young, so a maximum rate of increase, A = 1.28, has been used.
Eberhardt et al. (1996) examined data on an elk population
under very good conditions and concluded that A= 1.28 is a

likely maximum for this species with very similar life-history -

characteristics. Higher rates of increase for caribou have been
reported (Keith 1983), but it seems likely that such rates are
due to short-term fluctuations or sampling variation, and could
not be sustained. A maximum rate of increase for moose might
be obtained by assuming a first-year survival rate of 0.95 and
an annual survival rate of 0.99 for subsequent years, single
births at age 2, and 40% twinning (Ballard et al. 1991, Table 3)
for older moose. Truncating at age 25 to approximate the effect

of senescence and using the Lotka—Leslie mode]
(cf. Eberhardt 1985) give a maximum of A = 1.38 for moose,
The maximum rate of increase for wolves was estimated from
Keith’s data (Fig. 1) as A = 1.48.

In trials, the rates developed above and an estimate of the
equilibrium constant (a) as an average (209 deer-equivalenis)
of the pooled value from the data of Fuller (1989) and Messier
(1994) and the value from the multiple-regression fit to Isle
Royale data were used. Converting for moose gives 209/6 =
34.8 moose per wolf each year, or 1/34.8 = 0.029 wolves per
moose. The data of Dale et al. (1994) averaged 0.086 caribou
per wolf each day. Assuming 7 months of consumption of cari-
bou per year yields 18 caribou per wolf per year. Eberhardt
and Pitcher (1992) estimated 11.4 caribou per wolf each year
in modeling wolf predation on caribou. About 7 moose per
wolf each year is given above, which gives, on a biomass basis,
3(7) =21 caribou per wolf each year.

We thus use values of ¢ for moose and caribou as a weighted
average (weights of unity times the number of caribou, or 3
times the number of moose divided by the current biomass
multiplied by the utilization rates for caribou (21) or moose
(7)). The initial numbers were set at 30 000 for caribou
(K = 80 000), 1000 for moose (K = 20 000), and 20 for wolves.
The several populations achieved equilibrium (Fig. 4) within
about 20 years, at about 17 000 moose, 62 000 caribou, and
1000 wolves.

Multiple predators

In the predator—prey systems considered here (ungulates a}ld
wolves in Alaska and Canada), there are two additional major
sources of predation: bears and hunters. For most plractlca1
purposes, removals by hunting and trapping can simply be
subtracted on the right side of eq. 1. However, selective har-
vests result in the need to treat males and females separately.
Hunters may also select older animals, so an age-structir®
model dealing with the sexes separately may be required in the
case of hunting harvests. Bear predation largely occurs shortly
after calves are born (Adams et al. 1995). While it is evide{lt
that the extra energy thus provided to bears in the spring »
important, bear numbers are not likely to be controlled by ¢
availability of such prey. Hence, a working approximation &%
be obtained by adding another component of removal to €4- L
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4. Hypothetical trend of moose and caribou populations when kill rates are kept proportional to current biomass. Parameter values and

gyrther details are given in the text.
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Discussion Park (Thompson and Peterson 1988; Bergerud and Snider

[ have tried to show here that simple versions of the
Lotka—Volterra equations expressed as difference equations
may serve to model actual data on predator—prey systems n-
volving wolves and ungulates. The dependence of wolves on
their ungulate prey base makes it seem certain that a complex
and dynamic system needs to be considered, and it is difficult
to see how one can hope to analyze such systems without
considering prey and predator populations simultaneously.
The model used here is very simple, but appears to provide at
least a caricature of the actual system. Another trophic level
should be considered if possible. McLaren and Peterson (1994)
considered the relationship of the Isle Royale moose and wolf
data to primary productivity. :

As always, humans exert a strong influence on both preda-
tors and prey, so there are few prospects for studying the inter-
action without human influence. The Isle Royale situation is
one exception, and the recent reintroduction of wolves into
Yellowstone National Park may ultimately provide another
example if adequate data can be obtained there. The Isle
Royale data (Fig. 2) suggest oscillations in predator and prey
numbers. Experience with egs. 1 and 2 using the constants
estimated here indicates that steady-state conditions are ap-
proached rather rapidly. Oscillations can be obtained by using
more complex functional and numerical responses (May 1973,
1981). Alternative possible causes of the oscillations needing
further study include the interaction between moose and
vegetation along with the impact of variable snow depth on the
moose population (cf. McRoberts et al. 1995).

More work needs to be done to determine whether the
analyses suggested above can be truly useful, but it may be
worthwhile to suggest a few prospects here. It had seemed to
me that one of the most daunting prospects is the carrying out
of any statistical analysis of predator—prey interactions, owing
o the complexity of the interactions and the likely nonlinear
lature of the models. It was thus something of a surprise that
Multiple-regression analyses were feasible, and it is to be

oped that this approach can be successfully pursued with ad-
dltlopal data, and more attention given to statistical aspects. If
Nothing else is learned, we may expect to get a better idea of
gata needs. An example is provided by the controversy about
¢ role of wolves in limiting moose numbers in Pukaskwa

1988). In their reply to criticism of earlier reports by
Thompson and Peterson (1988), Bergerud and Snider (1988)
present data on the numbers of moose and wolves for the years
1975 through 1979.

At first glance, one might hope that the multiple-regression
model in egs. 1 and 2 might be useful for examining these data.
However, 5 paired observations supply only 4 pairs in the dif-
ference equations, which use observations at # and¢—1,and 4
pairs of observations provide no degrees of freedom for fitting
eq. 2, inasmuch as 3 parameters must be estimated. As a rough
rule of thumb, one needs 6-8 degrees of freedom to get any
kind of stability in variance estimates, so it seems clear that
we need at least 10-12 pairs of observations in order to
consider trying the multiple-regression equations. Very likely,
some Monte Carlo studies using the equations studied here
would help us to decide when it may be practical to attempt
the multiple-regression approach, and to be able to say some-
thing about the duration of studies needed. A number of studies
in the literature report quantitative data on prey but only quali-
tative impressions of predator population trends. It may none-
theless be instructive to utilize the parameters arrived at above
to see what the corresponding predator trend line might look
like on the basis of prey numbers, and to compare this trend
with the qualitative impressions reported in other papers. How-
ever, it seems clear that effective use of the predator—prey
equations will require estimates of actual numbers of predators
and prey. The difference equations used here are easily imple-
mented in spreadsheets. »

Another need indicated by the results given above is for a

further look at data on predator-prey ratios. Theberge (1990)

listed four confounding variables that may interfere with the
use of prey—predator ratios to determine the impact of preda-
tion: (1) plasticity in the functional response of wolves to prey
densities, (2) lags in the numerical response of wolf popula-
tions to changes in prey density, (3) the role of buffer prey
species and the variable speed of prey switching, and (4) the
proximity of the ungulate population to its nutrient/climate
ceiling. In addition to these important factors, it is essential to

know how the observed ratio developed. Estimates of the re- '

ciprocal of the critical ratio (a) in eq. 1 from two sources, the
data of Fuller (1989) and Messier (1994) and the estimate
given above from multiple regression on the Isle Royalé data,
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were in good agreement, but were double that obtained from
Keith’s (1983) data. This discrepancy requires more aftention.
Quite possibly, many of the data used by Fuller and Messier
were obtained under non-equilibrium conditions, and there is
thus a need to further examine the field data for indications as
to whether an equilibrium was likely at the time they were
collected.

Another aspect of the results above that needs more atten-
tion is the functional response. On the basis of the data
reviewed by Eberhardt (1997), the functional response was
reduced to a constant in the equations used here. This keeps
the results reasonably simple, and there is a need for further
investigation of this finding. Using a more complex functional
response produces some of the theoretically more interesting
oscillatory behavior in predator-prey dynamics but greatly re-
duces the prospect of estimating parameters from actual data.
Huggard (1993) has presented data that suggest how functional
response curves may arise from the ways in which predators
encounter prey. Huggard (1993) also reports little evidence of
prey selection when wolves used both deer and elk as prey, but
Carbyn et al. (1993) reported in detail on wolf packs that ap-
peared to specialize on bison (Bison bison). The multiple-prey
model proposed here is thus largely speculative.
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